Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1639-1653.doi: 10.3724/SP.J.1006.2021.04223
• RESEARCH PAPERS • Previous Articles Next Articles
WANG Ying(), GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing*()
[1] |
Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep, 2002, 3:846-851.
pmid: 12223466 |
[2] | 张佳蕾, 郭峰, 张凤, 杨莎, 耿耘, 孟静静. 提早化控对高产花生个体发育和群体结构影响. 核农学报, 2018, 32:2216-2224. |
Zhang J L, Guo F, Zhang F, Yang S, Geng Y, Meng J J. Effects of earlier chemical control on ontogeny and population structure of high yield peanut. J Nucl Agric Sci, 2018, 32:2216-2224 (in Chinese with English abstract). | |
[3] |
Flintham J E, Börner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997, 128:11-25.
doi: 10.1017/S0021859696003942 |
[4] |
Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI1 gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157:2120-2130.
doi: 10.1104/pp.111.185272 pmid: 22010107 |
[5] |
Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006, 140:580-590.
pmid: 16407447 |
[6] |
Chen W W, Cheng Z J, Liu L L, Man M, You X M, Wang J, Zhang F, Zhou C L, Zhang Z, Zhang H, You S M, Wang Y P, Luo S, Zhang J H, Wang J L, Wang J, Zhao Z C, Guo X P, Lei C L, Zhang X, Lin Q B, Ren Y L, Zhu S S, Wan J M. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci, 2019, 288:110208.
doi: 10.1016/j.plantsci.2019.110208 |
[7] |
Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825 |
[8] |
Chen X, Lu S C, Wang Y F, Zhang X, Lu B, Luo L Q, Xi D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2 |
[9] |
Langridge P, Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol, 2011, 29:33-40.
doi: 10.1016/j.tibtech.2010.09.006 pmid: 21030098 |
[10] |
Van Emon J M. The omics revolution in agricultural research. J Agric Food Chem, 2016, 64:36-44.
doi: 10.1021/acs.jafc.5b04515 |
[11] |
Edwards D, Batley J. Plant bioinformatics: from genome to phenome. Trends Biotechnol, 2004, 22:232-237.
pmid: 15109809 |
[12] |
Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol, 2010, 51:497-423.
doi: 10.1093/pcp/pcq027 |
[13] | Wang X D, Zheng M, Liu H F, Zhang L, Chen F, Zhang W, Fan S H, Peng M L, Hu M L, Wang H Z, Zhang J F, Hua W. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. BMC Biotechnol Biofuels, 2020, 13:42. |
[14] | 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46:385-394. |
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46:385-394 (in Chinese with English abstract). | |
[15] | 巨飞燕, 张思平, 刘绍东, 马慧娟, 陈静, 葛常伟, 沈倩, 张小萌, 刘瑞华, 赵新华, 张永江, 庞朝友. 利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定. 棉花学报, 2019, 31:403-413. |
Ju F Y, Zhang S P, Liu S D, Ma H J, Chen J, Ge C W, Shen Q, Zhang X M, Liu R H, Zhao X H, Zhang Y J, Pang C Y. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA. Cotton Sci, 2019, 31:403-413 (in Chinese with English abstract). | |
[16] |
Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut ( Arachis hypogaeaL.). Sci Rep, 2016, 6:39478.
doi: 10.1038/srep39478 pmid: 27995991 |
[17] |
Zhang X G, Zhang J H, He X Y, Wang Y, Ma X L, Yin D M. Genome wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci, 2017, 8:1611.
doi: 10.3389/fpls.2017.01611 |
[18] | 彭振英, 单雷, 田海莹, 孟静静, 郭峰, 王兴军, 张智猛, 丁红, 万书波, 李新国. 利用远缘杂交培育半匍匐密枝型高产花生新品系. 中国油料作物学报, 2019, 41:490-496. |
Peng Z Y, Shan L, Tian H Y, Meng J J, Guo F, Wang X J, Zhang Z M, Ding H, Wan S B, Li X G. Breeding of semi-sprawl and dense-branching high yield peanut by distant hybridization. Chin J Oil Crop Sci, 2019, 41:490-496 (in Chinese with English abstract). | |
[19] | 鲁清, 刘浩, 李海芬, 陈小平, 洪彦彬, 刘海燕, 李少维, 周桂元, 梁炫强. 花生不同株型主要农艺性状的相关分析及其对单株产量的影响. 热带作物学报, 2019, 40:1115-1121. |
Lu Q, Liu H, Li H F, Chen X P, Hong Y B, Liu H Y, Li S W, Zhou G Y, Liang X Q. Correlation analysis of main agronomic traits of different plant types and path analysis of yield per plant in peanut ( Arachis hypogaea L.). Chin J Trop Crop, 2019, 40:1115-1121 (in Chinese with English abstract). | |
[20] | 彭振英, 单雷, 张智猛, 李新国, 万书波. 花生株型与高产. 花生学报, 2019, 48(2):69-72. |
Peng Z Y, Shan L, Zhang Z M, Li X G, Wan S B. High yield and plant type of peanut. J Peanut Sci, 2019, 48(2):69-72 (in Chinese with English abstract). | |
[21] | 胡珀, 韩天富. 植物茎秆性状形成与发育的分子基础. 植物学通报, 2008, 25:1-13. |
Hu P, Han T F. Molecular basis of stem trait formation and development in plants. Chin Bull Bot, 2008, 25:1-13 (in Chinese with English abstract). | |
[22] |
Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241 |
[23] |
Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern green revolution gene for reduced height in wheat. Plant J, 2017, 92:892-903.
doi: 10.1111/tpj.13726 |
[24] |
Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108: 11034-11039.
doi: 10.1073/pnas.1019490108 |
[25] | 王健, 朱锦懋, 林青青, 李晓娟, 滕年军, 李振声, 李滨, 张爱民, 林金星. 小麦茎秆结构和细胞壁化学成分对抗压强度的影响. 科学通报, 2006, 51:679-685. |
Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall chemical composition on resistance to compressive strength in wheat. Sci Bull, 2006, 51:679-685. | |
[26] | 谢星光, 戴传超, 苏春沦, 周家宇, 王宏伟, 王兴祥. 内生真菌对花生残茬腐解及土壤酚酸含量的影响. 生态学报, 2015, 35:3536-3845. |
Xie X G, Dai C C, Su C L, Zhou J Y, Wang H W, Wang X X. Effects of endophytic fungus on decay of peanut residues and phenolic acid concentrations in soil. Acta Ecol Sin, 2015, 35:3536-3845 (in Chinese with English abstract). | |
[27] |
Xie L Q, Yang C J, Wang X L. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot, 2011, 62:4495-4506.
doi: 10.1093/jxb/err164 |
[28] |
Muro-Villanueva F, Mao X Y, Chapple C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol, 2019, 56:202-208.
doi: 10.1016/j.copbio.2018.12.008 |
[29] |
Liu Q Q, Luo L, Zheng L Q. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci, 2018, 19:335.
doi: 10.3390/ijms19020335 |
[30] | Yeats T H, Bacic A, Johnson K L. Plant glycosylphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J Integr Plant Biol, 2018, 8:649-669. |
[31] |
Dai X X, You C J, Chen G P, Li X H, Zhang Q F, Wu C Y. OsBC1L4encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol, 2011, 75:333-345.
doi: 10.1007/s11103-011-9730-z |
[32] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15:573-581.
doi: 10.1016/j.tplants.2010.06.005 |
[33] |
Liu J J, Osbourn A, Ma P D. MYB transcription factors as regualtors of phenylpropanoid metabolism in plants. Mol Plant, 2015, 8:689-708.
doi: 10.1016/j.molp.2015.03.012 |
[34] |
Legay S, Sivadon P, Blervacq A S, Pavy N, Baghdady, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation inArabidopsis and poplar. New Phytol, 2010, 188:774-786.
doi: 10.1111/nph.2010.188.issue-3 |
[35] |
Zhang Y X, Yu C S, Lin J Z, Liu J, Liu B, Wang J, Huang A B, Li H Y, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One, 2017, 12:e0180825.
doi: 10.1371/journal.pone.0180825 |
[36] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9:559.
doi: 10.1186/1471-2105-9-559 |
[37] |
Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98:187-203.
doi: 10.1007/s11103-018-0763-4 |
[38] |
Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10:79-87.
doi: 10.1016/j.tplants.2004.12.010 |
[39] |
Chen X, Lu S C, Wang Y F, Zhang X, Lv B, Luo L Q, Li D D, Shen J B, Ma H, Ming F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J, 2015, 82:302-314.
doi: 10.1111/tpj.2015.82.issue-2 |
[40] |
Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S Jin X, Renou J P, Thibaud J B, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. ArabidopsisWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun, 2013, 4:2625.
doi: 10.1038/ncomms3625 |
[41] | 郝晓云, 蔡永智, 钱雯婕, 袁哈利, 李榕, 李鸿彬. 植物GDSL脂肪酶家族研究进展. 植物生理学报, 2013, 49:1286-1290. |
Hao X Y, Cai Y Z, Qian W J, Yuan H L, Li R, Li H B. Advances in research of GDSL-lipase family in plants. Plant Physiol J, 2013, 49:1286-1290 (in Chinese with English abstract). | |
[42] |
Du C Q, Li X S, Chen J, Chen W J, Li B, Li C Y, Wang L, Li J L, Zhao X Y, Lin J Z, Liu X M, Luan S, Yu F. A Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci USA, 2016, 113:8326-8334.
doi: 10.1073/pnas.1606728113 |
[43] |
Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio R L, Matsuoka M, Ueguchi-Tanaka M. OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation. J Integr Plant Biol, 2018, 60:130-143.
doi: 10.1111/jipb.12557 |
[44] |
Naran R, Pierce M, Mort A J. Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons. Plant J, 2007, 50:95-107.
doi: 10.1111/j.1365-313X.2007.03033.x |
[45] |
Liwanag A J M, Ebert B, Verhertbruggen Y, Rennie E A, Rautengarten C, Oikawa A, Andersen M C F, Clausen M H, Scheller H V. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a b-1,4-galactan β-1,4-galactosyltransferase. Plant Cell, 2012, 24:5024-5036.
doi: 10.1105/tpc.112.106625 |
[46] |
Gou J Y, Miller L M, Hou G C, Yu X H, Chen X Y, Liu C J. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell, 2012, 24:50-65.
doi: 10.1105/tpc.111.092411 |
[47] | 张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学: 生命科学, 2015, 45:644-556. |
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Sci Sin Vitae, 2015, 45:644-556 (in Chinese with English abstract). | |
[48] | 范春芬, 王艳婷, 彭良才, 丰胜求. 植物细胞壁伸展蛋白的功能与利用. 植物生理学报, 2018, 54:1279-1287. |
Fan C F, Wang Y T, Peng L C, Feng S Q. Plant extensins function and their potential genetic manipulation in crops. Plant Physiol J, 2018, 54:1279-1287 (in Chinese with English abstract). |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[4] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[5] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[6] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[7] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[8] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[9] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[10] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[11] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[12] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[13] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[14] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[15] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
|