Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2314-2323.doi: 10.3724/SP.J.1006.2021.04266

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection

ZHANG Huan**(), LUO Huai-Yong**(), LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang*()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2020-12-08 Accepted:2021-04-14 Online:2021-12-12 Published:2021-06-15
  • Contact: JIANG Hui-Fang E-mail:18198335427@163.com;huaiyongluo@caas.cn;peanutlab@oilcrops.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31761143005);National Natural Science Foundation of China(31971903);Central Public-interest Scientific Institution Basal Research Fund(1610172019008)

Abstract:

Peanut is one of the main oil crops, which is harmed by many pathogenic microorganisms during growth and development period. Breeding and selection of disease-resistant varieties is one of the most economical and effective ways to control disease, and disease resistance genes are important genes for plant resistance to pathogenic microorganisms. Here, the whole genome-wide identification of peanut disease resistance genes was carried out for the first time. A total of 4156 candidate disease resistance genes were identified. Among them, 536, 490, 232, 182, and 149 genes were RLK, RLP, NL, CNL, and TNL, respectively. The distribution of disease resistance genes was uneven on chromosomes, and most of them were concentrated on chromosome B02. Transcriptome profiling revealed that 111 genes were specifically expressed in resistant materials, 104 genes were specifically expressed in susceptible materials, 2216 genes were expressed in both resistant and susceptible materials, while 1725 genes were not expressed in both resistant and susceptible materials. Two kinds of differentiate expressed R genes were identified, including five genes in the first group responded to the infection of Ralstonia solanacearum at specific time and 65 genes in the second group which exhibited higher expressions in resistant cultivar than susceptible cultivar. A candidate gene Arahy.5D95TJ was successfully validated by qRT-PCR. In this study, the identification and analysis of peanut disease resistance genes provides the important reference for further research of their functions and molecular breeding of peanut disease resistance.

Key words: Arachis hypogaea, disease resistance gene, bacterial wilt, transcriptome profiling

Table 1

Number and type of R genes in peanut"

类别
Type
包含结构域
Domain contained
基因数
Gene number
R基因比例
Proportion in R gene (%)
RLK TM, LRR, Kinase 536 12.90
RLP TM, LRR 490 11.79
CNL CC, TM, NBS, LRR 182 4.38
TNL TM, TIR, NBS, LRR 149 3.59
KIN TM, Kinase 1714 41.24
NL TM, NBS, LRR 232 5.58
CK CC, TM, Kinase 221 5.32
N TM, NBS 146 3.51
CN CC, TM, NBS 136 3.27
CTNL CC, TM, TIR, NBS, LRR 77 1.85
L LRR 76 1.83
T TM, TIR 65 1.57
TN TM, TIR, NBS 61 1.47
CL CC, TM, LRR 28 0.67
CLK CC, TM, LRR, Kinase 20 0.48
CNT CC, TM, NBS, TIR 15 0.36
CT CC, TM, TIR 6 0.14
TRAN TM 2 0.05
总计Total 4156

Fig. 1

Distribution of R genes on peanut chromosomes Expressed in both resistant and susceptible materials are marked by green; only expressed in resistant materials are marked by red; only expressed in susceptible materials are marked by purple; not expressed in resistant and susceptible materials are marked by black."

Fig. 2

Distribution range of FPKM values of R genes in peanut RC: control of resistant material; RT: treatment of resistant material; SC: control of susceptible material; ST: treatment of susceptible material."

Fig. 3

Two classes of differentially expressed R genes infected by Ralstonia solanacearum in peanut RC: control of resistant material; RT: treatment of resistant material; SC: control of susceptible material; ST: treatment of susceptible material. RT12, RT 24, RT 48, RT 72, and RT 96 represented the resistant materials collected at 12, 24, 48, 72, and 96 hours post inoculated with Ralstonia solanacearum (treatment group); RC12, RC24, RC48, RC72, and RC 96 represented the resistant materials collected at 12, 24, 48, 72, and 96 hours post inoculated with water (control group); ST12, ST24, ST48, ST72, and ST 96 represented the susceptible materials collected at 12, 24, 48, 72, and 96 hours post inoculated with Ralstonia solanacearum (treatment group); SC12, SC24, SC48, SC72, and SC96 represented the susceptible materials collected at 12, 24, 48, 72, and 96 hours post inoculated with water (control group). FPKM: fragments per kilobase per million bases."

Fig. 4

Differentially expressed R genes in the confidential interval of the major QTL for resistance to bactrierl wilt Abbreviations are the same as those given in Fig. 3."

[1] Howden A J M, Huitema E. Effector-triggered post translational modifications and their role in suppression of plant immunity. Front Plant Sci, 2012, 3:1-6.
[2] Jones J D G, Dang J L. The plant immune system. Nature, 2006, 444:323-329.
doi: 10.1038/nature05286
[3] Osuna-Cruz C M, Paytuvi-Gallart A, Donato A D, Sundesha V, Andolfo G, Cigliano R A, Sanseverino W, Ercolano M R. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res, 2018, 46:D1197-D1201.
doi: 10.1093/nar/gkx1119
[4] Liu J L, Liu X L, Dai L Y, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34:765-776.
doi: 10.1016/S1673-8527(07)60087-3
[5] Xun H W, Yang X D, He H L, Wang M, Guo P, Wang Y, Pang J S, Dong Y S, Feng X Z, Wang S C, Liu B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol Biol, 2019, 99:95-111.
doi: 10.1007/s11103-018-0804-z
[6] 李廷刚. 棉花抗黄萎病全基因组关联分析及TIR-NBS-LRR类抗病基因GhTNL1功能研究. 中国农业科学院博士学位论文, 北京, 2018.
Li T G. Genome-wide Association Analysis of Cotton Resistance to Verticillium wilt and Functional Study of TIR-NBS-LRR Resistance Gene GhTNL1. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[7] 黄曼. 番茄SlNBRP1基因的克隆及抗病性研究. 合肥工业大学硕士学位论文, 安徽合肥, 2019.
Huang M. Cloning and Disease Resistance of SlNBRP1 Gene in Tomato. MS Thesis of Hefei University of Technology, Hefei, Anhui, China, 2019 (in Chinese with English abstract).
[8] Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172:1901-1914.
doi: 10.1534/genetics.105.044891
[9] 付瑞双. 番茄类受体激酶SlDALR1在防御细菌性斑点病中的功能研究. 浙江大学硕士学位论文, 浙江杭州, 2020.
Fu R S. Study of Tomato LRR Receptor-like Kinase SlDALR1 in the Defense Against Bacterial Speck. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020 (in Chinese with English abstract).
[10] Jiang Z N, Ge S, Xing L P, Han D J, Kang Z S, Zhang G Q, Wang X J, Wang X E, Chen P D, Cao A Z. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot, 2013, 64:3735-3746.
doi: 10.1093/jxb/ert206
[11] 游春平, 傅莹, 韩静君, 刘开启, 郑奕雄. 我国花生病害的种类及其防治措施. 江西农业学报, 2010, 22(1):97-101.
You C P, Fu Y, Han J J, Liu K Q, Zheng Y X. Occurrence and management of main peanut diseases in China. Acta Agric Jiangxi, 2010, 22(1):97-101 (in Chinese with English abstract).
[12] Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRSl-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100:8024-8029.
doi: 10.1073/pnas.1230660100
[13] Godiard L, Sauviac L, Torii K U, Grenon O, Mangin B, Grimsley N H, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J, 2003, 36:353-365.
doi: 10.1046/j.1365-313X.2003.01877.x
[14] Mou S L, Gao F, Shen L, He W H, Cheng W, Wu Y, He S L. CaLRR-RLK1, a novel RD receptor-like kinase from Capsicum annuum and transcriptionally activated by CaHDZ27, act as positive regulator in Ralstonia solanacearum resistance. BMC Plant Biol, 2019, 19:28.
doi: 10.1186/s12870-018-1609-6
[15] Cheng W, Xiao Z L, Cai H Y, Wang C Q, Hu Y, Xiao Y P, Zheng Y X, Shen L, Yang S, Liu Z Q, Mou S L, Qiu A L, Guan D Y, He S L. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. Mol Plant Pathol, 2017, 18:1089-1100.
doi: 10.1111/mpp.12462 pmid: 27438958
[16] Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Zhuang W J. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. J Exp Bot, 2019, 70:5407-5421.
doi: 10.1093/jxb/erz274
[17] Zhang C, Chen H, Cai T C, Deng Y, Zhuang R R, Zhang N, Zeng Y H, Zheng Y X, Tang R H, Pan R L, Zhuang W J. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol J, 2017, 15:39-55.
doi: 10.1111/pbi.2017.15.issue-1
[18] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D Y, Seijo G, Leal-Bertioli S C M, Ren L H, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, Baidouri M E, Guo B Z, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X Y, Zheng Z, Sun Z Q, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51:877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[19] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Ye Deng1, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A , Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51:865-876.
doi: 10.1038/s41588-019-0402-2
[20] 晏立英, 黄家权, 雷永, 王圣玉, 廖伯寿. 花生青枯菌红安分离物的鉴定. 中国油料作物学报, 2010, 32:144-146.
Yan L Y, Huang J Q, Lei Y, Wang S Y, Liao B S. Identification and mutation of Ralstonia solacearum Hongan isolate. Chin J Oil Crop Sci, 2010, 32:144-146 (in Chinese with English abstract).
[21] Chen Y, Ren X P, Zhou X J, Huang L, Yan L Y, Liao B S, Huang J Y, Huang S M, Wei W H, Jiang H F. Dynamics in the resistant and susceptible peanut ( Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics, 2014, 15:1078.
doi: 10.1186/1471-2164-15-1078
[22] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12:323.
doi: 10.1186/1471-2105-12-323
[23] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[24] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15:550.
doi: 10.1186/s13059-014-0550-8
[25] Grömping U. Using R and RStudio for data management, statistical analysis and graphics (2nd Edition). J Stat Softw, 2015, 68:1-7.
[26] Luo H Y, Pandey M K, Khan A W, Wu B, Guo J B, Ren X P, Zhou X J, Chen Y N, Chen W G, Huang L, Liu N, Lei Y, Liao B S, Varshney R K, Jiang H F. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut ( Arachis hypogaea L.). Plant Biotechnol J, 2019, 17:2356-2369.
doi: 10.1111/pbi.v17.12
[27] 刘潮, 韩利红, 褚洪龙, 王海波, 高永, 唐利洲. 植物抗病研究进展与展望. 植物保护, 2018, 44(4):1-8.
Liu C, Han L H, Chu H L, Wang H B, Gao Y, Tang L Z. Progresses in and prospects for plant disease resistance research. Plant Prot, 2018, 44(4):1-8 (in Chinese with English abstract).
[28] Shao Z Q, Zhang Y M, Hang Y Y, Xue J Y, Zhou G C, Wu P, Wu X Y, Wu X Z, Wang Q, Wang B, Chen J Q. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol, 2014, 166:217-234.
doi: 10.1104/pp.114.243626
[29] Varshney R K, Chen W B, Li Y P, Bharti A K, Saxena R K, Schlueter J A, Donoghue M T A, Azam S , Fan G Y, Whaley A M, Farmer A D, Sheridan J , Iwata A, Tuteja R, Penmetsa R V, Wu W, Upadhyaya H D, Yang S P, Shah T, Saxena K B, Michael T, McCombie W R, Yang B, Zhang G Y, Yang H M, Wang J, Spillane C, Cook D R, May G D, Xu X, Jackson S A. Draft genome sequence of pigeonpea ( Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2012, 30:83-89.
doi: 10.1038/nbt.2022
[30] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S Q, Song Q J, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam S M, Gao D Y, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G F, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet, 2014, 46:707-713.
doi: 10.1038/ng.3008 pmid: 24908249
[31] Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q J, Thelen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J C, Tian Z X, Zhu L C, Gill N, Joshi T, Libault M, Sethurama A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463:178-183.
doi: 10.1038/nature08670
[32] 李任建, 申哲源, 李旭凯, 韩渊怀, 张宝俊. 谷子NBS-LRR类基因家族全基因组鉴定及表达分析. 河南农业科学, 2020, 49(2):34-43.
Li R J, Shen Z Y, Li X K, Han Y H, Zhang B J. Genome-wide identification and expression analysis of NBS-LRR gene family in Setaria italic. J Henan Agric Sci, 2020, 49(2):34-43 (in Chinese with English abstract).
[33] Cheng Y, Li X Y, Jiang H Y, Ma W, Miao W Y, Yamada T, Zhang M. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J, 2012, 279:2431-2443.
doi: 10.1111/j.1742-4658.2012.08621.x pmid: 22564701
[34] Monosi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447.
pmid: 15309302
[35] 胡韵卓, 石媛媛, 黄小芳, 毕楚韵, 周丽香, 梁才晓, 黄碧芳, 许明, 林世强, 陈选阳. 三裂叶薯NBS-LRR类抗病基因的筛选鉴定与结构分析. 热带亚热带植物学报, 2020, 28:495-504.
Hu Y Z, Shi Y Y, Huang X F, Bi C Y, Zhou L X, Liang C X, Huang B F, Xu M, Lin S Q, Chen X Y. Screening and identification and structural analysis of NBS-LRR family genes in Ipomoea triloba. J Trop Subtrop Bot, 2020, 28:495-504 (in Chinese with English abstract).
[36] 丁玉梅, 高婷, 暴会会, 谢俊俊, 姚春馨, 周晓罡, 侯思名, 杨正安. 黑籽南瓜NBS类抗病基因的鉴别及关键基因分析. 植物生理学报, 2020, 56:1833-1844.
Ding Y M, Gao T, Bao H H, Xie J J, Yao C X, Zhou X G, Hou S M, Yang Z A. The identification and key genes analysis of NBS type disease-resistance gene from Cucurbita ficifotia. J Plant Physiol, 2020, 56:1833-1844 (in Chinese with English abstract).
[37] 刘云飞, 万红建, 韦艳萍, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 杨悦俭. 番茄NBS-LRR抗病基因家族全基因组分析. 核农学报, 2014, 28:790-799.
Liu Y F, Wan H J, Wei Y P, Li Z M, Ye Q J, Wang R Q, Ruan M Y, Yao Z P, Zhou G Z, Yang Y J. Genome-wide analysis of NBS-LRR resistance genes in tomato. J Nucl Agric Sci, 2014, 28:790-799 (in Chinese with English abstract).
[38] Yang S H, Zhang X H, Yue J X, Tian D C, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280:187-198.
doi: 10.1007/s00438-008-0355-0
[39] Zheng F Y, Wu H Y, Zhang R Z, Li S M, He W M, Wong F L, Li G Y, Zhao S C, Lam H M. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genomics, 2016, 17:402.
doi: 10.1186/s12864-016-2736-9
[40] 路妍, 刘洋, 宋阳, 景岚. 向日葵NBS-LRR抗病基因家族全基因组分析. 中国油料作物学报, 2020, 42:441-452.
Lu Y, Liu Y, Song Y, Jing L. Genome-wide analysis of NBS-LRR-encoding gene in Helianthus annuus. Chin J Oil Crop Sci, 2020, 42:441-452 (in Chinese with English abstract).
[41] Kang Y J, Kim K H, Shim S, Yoon M Y, Kim M Y, Van K, Suk-Ha L. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol, 2012, 12:139.
doi: 10.1186/1471-2229-12-139
[42] Meyers B C, Kozik A, Griego A, Kuang H H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15:809-834.
pmid: 12671079
[43] 马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31:331-339.
Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31:331-339 (in Chinese with English abstract).
[44] Wu Y Z, Xun Q Q, Guo Y, Zhang J H, Cheng K L, Shi T, He K, Hou S W, Gou X P, Li J. Genome-wide expression pattern analyses of the arabidopsis leucine-rich repeat receptor-like kinases. Mol Plant, 2016, 9:289-300.
doi: 10.1016/j.molp.2015.12.011
[45] Sun R B, Wang S H, Ma D, Liu C L. Genome-wide analysis of LRR-RLK gene family in four Gossypium species and expression analysis during cotton development and stress responses. Genes, 2018, 9:592
doi: 10.3390/genes9120592
[46] Li X X, Ahmad S, Guo C, Yu J, Cao S X, Gao X M, Li W, Li H, Guo Y F. Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 2018, 7:120
doi: 10.3390/cells7090120
[47] Wang J L, Hu T H, Wang W H, Hu H J, Wei Q Z, Bao C L. Investigation of evolutionary and expressional relationships in the function of the leucine-rich repeat receptor-like protein kinase gene family (LRR-RLK) in the radish ( Raphanus sativus L.). Sci Rep, 2019, 9:10763-10768.
doi: 10.1038/s41598-019-46999-8
[48] Song H, Nan Z B. Genome-wide analysis of nucleotide-binding site disease resistance genes in Medicago truncatula. Chin Sci Bull, 2014, 59:1129-1138.
doi: 10.1007/s11434-014-0155-3
[49] Tan S L, Wu S. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genom, 2012, 2012:1-12.
[50] Petre B, Hacquard S, Duplessis S, Rouhier N. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. Front Plant Sci, 2014, 5:111.
[51] 李奎, 李晓旭, 刘成, 段奇佳, 郭永峰. 普通烟草RLP类受体蛋白家族成员的鉴定与进化、表达分析. 中国烟草科学, 2017, 38(2):63-68.
Li K, Li X X, Liu C, Duan Q J, Guo Y F. Genome-wide identification and expression analysis of the RLPs gene family in Nicotiana tabacum. Chin Tob Sci, 2017, 38(2):63-68 (in Chinese with English abstract).
[52] 黄小芳, 毕楚韵, 石媛媛, 胡韵卓, 周丽香, 梁才晓, 黄碧芳, 许明, 林世强, 陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析. 作物学报, 2020, 46:1195-1207.
Huang X F, Bi C Y, Shi Y Y, Hu Y Z, Zhou L X, Liang C X, Huang B F, Xu M, Lin S Q, Chen X Y. Discovery and analysis of NBS-LRR gene family in sweet potato genome. Acta Agron Sin, 2020, 46:1195-1207 (in Chinese with English abstract).
[1] LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034.
[2] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[3] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[4] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[5] CHEN Yu-Ting, LIU Lu, CHU Pan-Pan, WEI Jia-Xian, QIAN Hui-Na, CHEN Hua, CAI Tie-Cheng, ZHUANG Wei-Jian, ZHANG Chong. Construction of yeast two-hybrid cDNA library induced by Ralstonia solanacearum and interaction protein screening for AhRRS5 in peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2134-2146.
[6] LI Wei-Tao,XU Zhi-Jun,CAI Yan,GUO Jian-Bin,YU Bo-Lun,HUANG Li,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,LIU Nian,CHEN Wei-Gang,REN Xiao-Ping,JIANG Hui-Fang. Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage [J]. Acta Agronomica Sinica, 2020, 46(4): 484-490.
[7] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[8] LI Ji-Fa,DENG Zhi-Ying,SUN Fu-Lai,GUAN Xi-Zhen,WANG Yan-Xun,TIAN Ji-Chun. Resistance Genes of Wheat Variety Shannong 20 Identified by Diagnostic Molecular Markers [J]. Acta Agron Sin, 2014, 40(04): 611-621.
[9] LIAO Bo-Shou, LEI Yong, WANG Sheng-Yu, HUANG Jia-Quan, LIN Xiao-Peng, JIANG Hui-Fang, YAN Li-Ying. Novel High Oil Germplasm with Resistance to Aspergillus flavus and Bacterial Wilt Developed from Recombinant Inbred Lines [J]. Acta Agron Sin, 2010, 36(08): 1296-1301.
[10] QUE You-Xiong,XU Li-Ping,ZHANG Mu-Qing,ZAHNG Ji-Sen,CHEN Ru-Kai. Cloning and Expression Analysis of an NBS-LRR Type Gene from Sugarcane [J]. Acta Agron Sin, 2009, 35(6): 1161-1166.
[11] WANG Jie-Ming;JIANG Hai-Yang;ZHAO Yang;XIANG Yan;ZHU Su-Wen;CHENG Bei-Jiu. Genome-Wide Analysis of NBS-Encoding disease Resistance Genes in Maize Inbred Line B73 [J]. Acta Agron Sin, 2009, 35(3): 566-570.
[12] LIAO Bo-Shou;LEI Yong;WANG Sheng-Yu;LI Dong;HUANG Jia-Quan;JIANG Hui-Fang;REN Xiao-Ping. Genetic Diversity of Peanut RILs and Enhancement for High Oil Geno-types [J]. Acta Agron Sin, 2008, 34(06): 999-1004.
[13]

JIANG Hui-Fang ;LIAO Bo-Shou;REN Xiao-Ping;LEI Yong;FU Ting-Dong;Mace E ;Crouch J H

. Genetic Diversity Assessment in Peanut Genotypes with Bacterial Wilt Resistance [J]. Acta Agron Sin, 2006, 32(08): 1156-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!