Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2362-2370.doi: 10.3724/SP.J.1006.2021.03074

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers

LIU Shao-Rong1,2,**(), YANG Yang1,**(), TIAN Hong-Li1(), YI Hong-Mei1, WANG Lu1, KANG Ding-Ming2, FANG Ya-Ming1, REN Jie1, JIANG Bin1, GE Jian-Rong1, CHENG Guang-Lei1,*, WANG Feng-Ge1,*   

  1. 1Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-12-17 Accepted:2021-04-14 Online:2021-12-12 Published:2021-05-26
  • Contact: CHENG Guang-Lei,WANG Feng-Ge E-mail:liushaorong2018@163.com;caurwx@163.com;tianhongli9963@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    13th Five-Year National Key Research and Development Program of China(2017YFD0102005)

Abstract:

Silage corn is a high-quality feed crop, which is of great significance to the vigorous development of animal husbandry. In order to explore the current status of genetic diversity of silage corn varieties, 141 silage corn varieties approved by national or provincial (municipal) were used as materials. From the perspective of ecological regions, the genetic diversity of the test varieties was analyzed by agronomic and quality traits and SSR markers. The results showed that the coefficient of variation of the 13 agronomic and quality traits ranged from 10.30% to 30.31%, with an average of 16.01%; the diversity index ranged from 0.50 to 0.71, with an average of 0.60. According to the cluster analysis of tested varieties based on agronomic and quality traits, all the varieties were divided into five groups, and most of them from the same ecological region were classified into the same group. A total of 482 allelic variants were detected for 40 SSR markers, with an average of 12.05 per locus, and the polymorphic information content (PIC) ranged from 0.27 to 0.89, with an average of 0.68. The genetic distances between South varieties and Northeast, Huang-Huai-Hai, or Northwest varieties are relatively far with a value of 0.054, 0.047, and 0.046, respectively, and most of South varieties are clustered in the same group. The analysis results of the two methods show both commonalities and differences. South varieties show specificity in both agronomic and quality traits and SSR markers, while Northwest and Huang-Huai-Hai varieties show specificity only in agronomic and quality traits. Combination of the two methods can thus help us understand the genetic background of silage corn varieties more comprehensively and accurately, and provide basis and reference for the selection and promotion of new varieties in different ecological regions.

Key words: silage corn, approved varieties, genetic diversity, SSR marker, agronomic and quality traits

Table 1

Sample information statistics"

生态区
Ecological region
审定品种来源及数量
Source and number of varieties approved
总计
Total
东华北 Northeast 国审玉11个, 北京14个, 黑龙江22个
National approved corn 11, Beijing 14, Heilongjiang 22
47
黄淮海 Huang-Huai-Hai 国审玉4个, 河北14个, 山西3个, 陕西6个
National approved corn 4, Hebei 14, Shanxi 3, Shaanxi 6
27
西北 Northwest 国审玉4个, 内蒙古21个, 新疆14个, 甘肃2个, 宁夏6个
National approved corn 4, Inner Mongolia 21, Xinjiang 14, Gansu 2, Ningxia 6
47
南方 South 国审玉5个, 四川8个, 贵州2个, 上海1个, 福建3个, 云南1个
National approved corn 5, Sichuan 8, Guizhou 2, Shanghai 1, Fujian 3, Yunnan 1
20

Table 2

Agronomic and quality characteristics of 169 samples"

农艺及品质性状
Agronomic and quality traits
平均值±标准差
Mean±SD
变异幅度
Range
变异系数
Coefficient of variation (%)
Simpson指数
Simpson’s index
生育期 Growth period (d) 116.09±13.56 82.9-141.5 11.68 0.64
株高 Plant height (cm) 305.34±31.45 228-400 10.30 0.59
穗位高 Ear height (cm) 138.85±24.26 89.00-215.03 17.47 0.52
绿叶数 Green leaf number (piece) 15.25±2.89 8.80-22.02 18.95 0.56
穗长 Ear length (cm) 22.10±2.38 16.7-27.0 10.77 0.71
穗行数 Ear rows (row) 16.60±1.76 12.5-21.0 10.60 0.63
粗蛋白 Crude protein (%) 8.73±1.47 6.61-15.91 16.84 0.50
中性洗涤纤维 NDF (%) 45.87±6.64 26.36-62.34 14.48 0.64
酸性洗涤纤维 ADF (%) 20.94±4.88 12.46-33.90 23.30 0.61
淀粉 Starch (%) 30.81±3.51 22.07-37.79 11.39 0.55
干重 Dry weight (kg hm-2) 21,848.09±6622.33 11,238.00-39,082.65 30.31 0.66
鲜重 Wet weight (kg hm-2) 80,071.25±12,994.96 50,290.5-108,431.1 16.23 0.63
种植密度 Planting density (plant hm-2) 66,553.56±10,532.54 42,000-120,000 15.83 0.53

Fig. 1

Cluster diagram and principal component diagram of 169 silage corn samples grouped by agronomic and quality traits A: NJ cluster diagram of 169 silage corn samples. In this figure, the red, green, purple, and blue circles represent the Northeast, Huang-Huai-Hai, Northwest, and South varieties, respectively, and the red, green, purple, blue, and sky blue lines represent X1, X2, X3, X4, and X5 cluster group. B: Principal component diagram of cluster group. In this figure, the red, green, purple, blue, and sky blue represent X1, X2, X3, X4, and X5 cluster group."

Fig. 2

Cluster diagram and principal component diagram of 141 silage corn varieties and 5 common corn varieties grouped by SSR marker A: NJ genetic clustering of 141 silage corn varieties and 5 common corn varieties. In this figure, the red, green, purple, and blue circles represent the Northeast, Huang-Huai-Hai, Northwest, and South varieties, respectively, and the red, green, purple, blue, and sky blue lines represent S1, S2, S3, S4, and S5 cluster group. B: Principal component diagram of cluster group. In this figure, the red, green, purple, blue, and sky blue represent S1, S2, S3, S4, and S5 cluster group."

Table 3

Analysis of variance of agronomic and quality traits of varieties from four ecological regions"

农艺及品质性状
Agronomic and quality traits
东华北
Northeast
黄淮海
Huang-Huai-Hai
西北
Northwest
南方
South
生育期Growth period (day) 116.37±9.06 B 101.72±8.82 C 126.77±8.52 A 110.37±17.39 B
株高Plant height (cm) 309.55±19.65 A 287.15±30.13 B 320.26±31.20 A 281.43±32.28 B
穗位高Ear height (cm) 132.34±16.32 B 121.18±15.76 C 158.86±22.38 A 125.51±17.76 BC
绿叶数Green leaf number (piece) 14.59±2.20 A 16.53±1.75 A 15.36±3.63 A 14.94±2.85 A
穗长Ear length (cm) 23.66±1.96 A 22.60±1.85 AB 21.56±2.17 AB 19.27±1.63 C
穗行数Ear rows (row) 16.83±1.51 A 16.42±1.56 A 16.94±1.77 A 14.57±1.29 B
粗蛋白Crude protein (%) 8.15±0.72 B 8.91±1.20 B 8.70±0.77 B 10.10±2.80 A
中性洗涤纤维NDF (%) 44.83±4.23 A 47.42±9.43 A 44.52±5.43 A 47.69±6.65 A
酸性洗涤纤维ADF (%) 19.09±2.45 C 22.53±6.47 AB 20.02±4.92 BC 23.39±3.74 A
淀粉Starch (%) 31.39±3.41 A 33.41±2.53 A 28.99±2.81 A 31.38±5.63 A
干重Dry weight (kg hm-2) 18,547.24±2435.26 B 17,536.17±2650.54 B 29,537.64±5435.77 A 17,759.3±3242.5 B
鲜重Wet weight (kg hm-2) 74,212.27±9542.69 B 74,436.46±7081.53 B 87,674.94±10583.30 A 62,630.35±10905.50 C
种植密度Planting density (plant hm-2) 63,409.06±6881.68 B 70,340.91±16,516.78 A 69,877.12±8121.04 A 59,500.00±5916.61 B

Table 4

Comparison of genetic diversity among varieties from four ecological regions"

生态区
Ecological region
样品数量
Sample size
等位变异数
Number of alleles
基因型数
Genotype number
基因多样性
Gene diversity
杂合度
Heterozygosity
PIC值
PIC index
东华北Northeast 47 7.65 13.55 0.68 0.65 0.64
黄淮海Huang-Huai-Hai 27 7.40 11.13 0.69 0.69 0.64
西北Northwest 47 9.13 16.30 0.71 0.69 0.68
南方South 20 7.43 10.03 0.71 0.72 0.68
[1] 国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报. 北京: 中华人民共和国国家统计局, 2020[2020-12-16]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_17289 13.html.
National Bureau of Statistics. Statistical Communique of the People’s Republic of China on 2019 National Economic and Social Development. Beijing: National Bureau of Statistics of People’s Republic of China, 2020[2020-12-16]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html.
[2] 中国人民共和国农业农村部信息中心. 循环农业促增收 绿色发展奔小康——“粮改饲” 凝聚产业兴旺 走出脱贫致富新路子. 北京: 中国人民共和国农业农村部, 2020 [2020-12-16]. http://www.moa.gov.cn/xw/qg/202010/t20201028_6355258.htm.
Information Center of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Recycling Agriculture to Increase Income, Green Development Towards a Well-off Society—“Grain Reforms to Feed” to Condense the Prosperity of the Industry and Take a New Path out of Poverty. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020 [2020-12-16]. http://www.moa.gov.cn/xw/qg/202010/t20201028_6355258.htm.
[3] 梁晓玲, 雷志刚, 阿布来提, 冯国俊, 李进, 李铭东. 青贮玉米育种及其生产. 玉米科学, 2003, 11(增刊2):73-76.
Liang X L, Lei Z G, Abu L T, Feng G J, Li J, Li M D. Breeding and production of silage corn. J Maize Sci, 2003, 11(S2):73-76 (in Chinese).
[4] 徐军, 虞德兵, 冯彬彬, 曹嘉铖, 周正, 邬彩霞. 不同来源鸡粪有机肥对西瓜-青贮玉米产量、品质的影响及效益分析. 中国农业大学学报, 2020, 25(10):89-97.
Xu J, Yu D B, Feng B B, Cao J C, Zhou Z, Wu C X. Effects of different organic chicken manure fertilizers on the yield and quality of watermelon-silage maize and benefit analysis. J China Agric Univ, 2020, 25(10):89-97 (in Chinese with English abstract).
[5] 刘刚, 张红瑞, 郭凯, 付彤, 刘天学. 河南青贮玉米品种鉴选与青贮质量评价. 草地学报, 2019, 27:510-514.
Liu G, Zhang H R, Guo K, Fu T, Liu T X. Evaluation and selection of the silage quality of forage maize in Henan province. Acta Agrestia Sin, 2019, 27:510-514 (in Chinese with English abstract).
[6] 庄克章, 徐立华, 徐相波, 汪黎明, 胡明, 吴荣华, 张春艳, 李俊庆. 鲁南地区青贮玉米品种筛选. 中国农学通报, 2017, 33(29):13-18.
Zhuang K Z, Xu L H, Xu X B, Wang L M, Hu M, Wu R H, Zhang C Y, Li J Q. Screening of silage maize in southern Shandong province. Chin Agric Sci Bull, 2017, 33(29):13-18 (in Chinese with English abstract).
[7] 陈桂兰, 阳康春, 韦冠睦, 阳俭, 蒋业钊, 林善海. 14个青贮玉米品种(系)田间表现评价. 南方农业学报, 2017, 48:266-271.
Chen G L, Yang K C, Wei G M, Yang J, Jiang Y Z, Lin S H. Field performance of 14 silage corn varieties (lines). J Southern Agric, 2017, 48:266-271 (in Chinese with English abstract).
[8] 王茜茜, 葛兆鹏, 裴玉贺, 赵美爱, 李军, 宋希云, 郭新梅. 38个青贮玉米品种的农艺性状及品质比较. 西南农业学报, 2020, 33:487-493.
Wang Q Q, Ge Z P, Pei Y H, Zhao M A, Li J, Song X Y, Guo X M. Comparison of agronomic traits and quality of 38 silage maize varieties. Southwest China J Agric Sci, 2020, 33:487-493 (in Chinese with English abstract).
[9] 邢锦丰, 段民孝, 王元东, 刘新香, 宋伟, 赵久然. 青贮玉米新品种京科932选育及配套技术. 种子科技, 2016, 34(7):59.
Xing J F, Duan M X, Wang Y D, Liu X X, Song W, Zhao J R. Breeding and supporting techniques of a new silage corn variety Jingke 932. Seed Sci Technol, 2016, 34(7):59 (in Chinese).
[10] 谭友斌, 唐高民, 苏道志. 国审青贮玉米新品种‘中玉335’的选育及配套技术研究. 农学学报, 2020, 10(9):16-20.
Tan Y B, Tang G M, Su D Z. New national silage maize variety ‘Zhongyu 335’: breeding and supporting technology. J Agric, 2020, 10(9):16-20 (in Chinese with English abstract).
[11] 谭华强. 利用形态学和RAPD, ISSR分子标记分析68个豇豆品种的亲缘关系. 四川农业大学硕士学位论文, 四川成都, 2014.
Tan H Q. Genetic Diversity Analysis and Varietal Identification among 68 Chinese Asparagus Bean (Vigna unguiculata ssp. sesquipedialis) Cultivars Based on RAPD, ISSR and Morphological Markers. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[12] 刘志斋, 郭荣华, 石云素, 蔡一林, 曹墨菊, 宋燕春, 王天宇, 黎裕. 中国玉米地方品种核心种质花期相关性状的表型多样性研究. 中国农业科学, 2008, 41:1591-1602.
Liu Z Z, Guo R H, Shi Y S, Cai Y L, Cao M J, Song Y C, Wang T Y, Li Y. Phenotypic diversity of flowering-related traits of maize landraces from the core collection preserved in china national GenBank. Sci Agric Sin, 2008, 41:1591-1602 (in Chinese with English abstract).
[13] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42:19-30.
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016, 42:19-30 (in Chinese with English abstract).
[14] 胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38:829-839.
Hu B L, Wan Y, Li X, Lei J G, Luo X D, Yan W G, Xie J K. Analysis on genetic diversity of phenotypic traits in rice ( Oryza sativa) core collection and its comprehensive assessment. Acta Agron Sin, 2012, 38:829-839 (in Chinese with English abstract).
[15] 余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 王蒂, 张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018, 44:63-74.
Yu B, Yang H X, Wang L, Liu Y H, Bai J P, Wang D, Zhang J L. Genetic diversity analysis and comprehensive assessment of phenotypic traits in introduced potato germplasm resources in arid and semi-arid area. Acta Agron Sin, 2018, 44:63-74 (in Chinese with English abstract).
[16] 柴华. 基于形态学标记青贮玉米自交系的聚类分析. 现代畜牧科技, 2017, (2):4-5.
Cai H. Cluster analysis of silage maize inbred lines base on morphological marker. Mod Anim Husb Sci Technol, 2017, (2):4-5 (in Chinese with English abstract).
[17] 吴建忠, 李绥艳, 林红, 马延华, 潘丽艳, 李东林, 孙德全. 青贮玉米品质性状遗传变异及主成分分析. 作物杂志, 2019, (3):42-48.
Wu J Z, Li S Y, Lin H, Ma Y H, Pan L Y, Li D L, Sun D Q. Genetic variation and principal component analysis of quality characters in silage maize. Crops, 2019, (3):42-48 (in Chinese).
[18] 李齐向, 张小中, 涂前程, 雷富贵, 纪平, 陈由禹. 基于SSR分子标记的青贮玉米自交系遗传多样性分析. 福建农业学报, 2013, 28:320-323.
Li Q X, Zhang X Z, Tu Q C, Lei F G, Ji P, Chen Y Y. Analysis of genetic diversity based on SSR markers on silage maize inbred lines. Fujian J Agric Sci, 2013, 28:320-323 (in Chinese with English abstract).
[19] 余鸣, 李存福, 玉柱, 潘金豹, 石守定, 杨清峰, 李玉荣, 刘芳, 尹晓飞. 青贮玉米品质分级. GB/T 25882-2010, 2010.
Yu M, Li C F, Yu Z, Pan J B, Shi S D, Yang Q F, Li Y R, Liu F, Yin X F. Quality Grading for Silage Maize. GB/T25882-2010, 2010 (in Chinese).
[20] Wang F G, Tian H L, Zhao J R, Yi H M, Wang L, Song W. Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica, 2011, 56:7-17.
[21] 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程: SSR标记法. NY/T 1432-2014, 2014.
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties: SSR Marker Method. NY/T 1432-2014, 2014 (in Chinese).
[22] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50:1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50:1-14 (in Chinese with English abstract).
[23] 王凤格, 李欣, 杨扬, 易红梅, 江彬, 张宪晨, 霍永学, 朱丽, 葛建镕, 王蕊, 任洁, 王璐, 田红丽, 赵久然. 植物品种SSR指纹分析专用软件SSR Analyser的研发. 中国农业科学, 2018, 51:2248-2262.
Wang F G, Li X, Yang Y, Yi H M, Jiang B, Zhang X C, Huo Y X, Zhu L, Ge J R, Wang R, Ren J, Wang L, Tian H L, Zhao J R. SSR Analyser: a special software suitable for SSR fingerprinting of plant varieties. Sci Agric Sin, 2018, 51:2248-2262 (in Chinese with English abstract).
[24] Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21:2128-2129.
doi: 10.1093/bioinformatics/bti282
[25] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33:1870-1874.
doi: 10.1093/molbev/msw054
[26] Kovach Computing Services (KCS). MVSP: Multivariate statistical package. United Kingdom: Kovach Computing Services (KCS), 2019 [2020-12-16]. https://www.kovcomp.co.uk/mvsp/index.html.
[27] 杨扬, 王凤格, 赵久然, 刘亚维. 中国玉米品种审定现状分析. 中国农业科学, 2014, 47:4360-4370.
Yang Y, Wang F G, Zhao J R, Liu Y W. Analysis of the current situation of accredited maize varieties in China. Sci Agric Sin, 2014, 47:4360-4370 (in Chinese with English abstract).
[28] 吴欣, 徐海良, 陈威, 刘素玲. 国审青贮玉米品种综合性状评价及发展趋势. 农学学报, 2019, 9(9):5-10.
Wu X, Xu H L, Chen W, Liu S L. Comprehensive evaluation and development trend of silage maize varieties approved by the state. J Agric, 2019, 9(9):5-10 (in Chinese with English abstract).
[29] 王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航. 中国328个玉米品种(组合) SSR标记遗传多样性分析. 中国农业科学, 2014, 47:856-864.
Wang F G, Tian H L, Zhao J R, Wang L, Yi H M, Song W, Gao Y Q, Yang G H. Genetic diversity analysis of 328 maize varieties (hybridized combinations) using SSR markers. Sci Agric Sin, 2014, 47:856-864 (in Chinese with English abstract).
[30] 易红梅, 任洁, 王璐, 王蕊, 葛建镕, 王凤格, 赵久然, 徐明良. 2014-2019年国家玉米区域试验参试组合DNA指纹检测及遗传多样性分析. 华北农学报, 2020, 35(3):87-93.
Yi H M, Ren J, Wang L, Wang R, Ge J R, Wang F G, Zhao J R, Xu M L. DNA fingerprinting and genetic diversity analysis of national maize regional trials in 2014-2019. Acta Agric Boreali-Sin, 2020, 35(3):87-93 (in Chinese with English abstract).
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[3] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[4] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[5] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[6] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[7] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[8] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[9] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[10] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[11] Yuan LU,Wei-Da AI,Qing HAN,Yi-Fa WANG,Hong-Yang LI,Yu-Ji QU,Biao SHI,Xue-Fang SHEN. Genetic diversity and population structure analysis by SSR markers in waxy maize [J]. Acta Agronomica Sinica, 2019, 45(2): 214-224.
[12] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[13] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[14] Hong LIU,Zhen-Jiang XU,De-Hua RAO,Qing LU,Shao-Xiong LI,Hai-Yan LIU, ,Xuan-Qiang LIANG,Yan-Bin HONG. Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers [J]. Acta Agronomica Sinica, 2019, 45(1): 26-36.
[15] Wei SHANG,Shen-Qing-Yu ZHAO,Jiang-Bo DANG,Qi-Gao GUO,Guo-Lu LIANG,Chao YANG,Yan ZHANG,Yi-Yin CHEN. Identification and Screening of Nicotiana tobacam-N. plumbaginifolia Heterologous Chromosome Plants Based on SSR Marker [J]. Acta Agronomica Sinica, 2018, 44(11): 1640-1649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!