Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 76-85.doi: 10.3724/SP.J.1006.2022.04241

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of StDRO1 gene polymorphism and association analysis with root traits in potato

XU De-Rong1,2(), SUN Chao1,2(), BI Zhen-Zhen1,2, QIN Tian-Yuan1,2, WANG Yi-Hao1,2, LI Cheng-Ju1,2, FAN You-Fang1,2, LIU Yin-Du1,2, ZHANG Jun-Lian1, BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-11-08 Accepted:2021-04-14 Online:2022-01-12 Published:2021-06-16
  • Contact: BAI Jiang-Ping E-mail:1830204585@qq.com;sunc@gsau.edu.cn;baijp@gsau.edu.cn
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32060502);National Natural Science Foundation of China(31660432);Gansu Provincial Education Department(2019B-073);China Agriculture Research System (Potato)(CARS-09-P14);Agriculture Research System of Gansu Province (Potato)(GARS-03-P1);Gansu Provincial Science and Technology Department Program(19ZD2WA002-02);Gansu Provincial Science and Technology Department Program(18JR3RA174);Fund of Gansu Agricultural University(2017RCZX-44)

Abstract:

In order to identify the single nucleotide polymorphism (SNP) of StDRO1 gene associated with potato root traits, StDRO1 gene coding region of the 110 tetraploid potato genotypes was cloned and sequenced. The association analysis between the StDRO1 SNPs and the major root traits of potato such as surface area, volume, and average diameter were carried out. The results showed that a SNP (G64C) was detected in the second exon of the StDRO1, 10 SNPs (G152A, A214G, A297G, C314T, A337T, T353C, T560A, C577A, C620A, and C625A) were identified in the third exon, and a SNP (T793A) was detected in the fourth exon. The association analysis indicated that in the total root volume, G152A locus of StDRO1 gene showed that GA genotype was superior to GG genotype (P < 0.05). In the average root diameter, C314 locus showed that CC genotype were superior to CT genotype (P < 0.05). In the root surface area, fresh weight, and dry weight, A337T locus showed that AT genotype were better than AA genotype (P < 0.05), while the locus in the average root diameter showed that AT genotype was significantly lower than AA genotype (P < 0.05). The root surface area, root volume, and fresh weight were showed as TC genotype > TT genotype (P < 0.05) in T353C site; the root volume was showed as CA genotype > CC genotype (P < 0.05) in C620A site; the root surface area, root volume, and fresh weight were showed as AT genotype > TT genotype (P < 0.05) in T793A site. In summary, the above six SNPs of StDRO1 genes had a significant impact on potato root traits, and the A337T, T353C, and T793A sites were particularly important. These results provide a basic theoretical reference for subsequent potato root architecture research and genetic improvement, but whether it could be used as a genetic marker for potato root traits need to be further verified by expanding the population sample.

Key words: potato, StDRO1 gene, root traits, association analysis, SNP

Table 1

Information of 110 potato materials"

材料编号
Material code
CIP号
CIP code
材料编号
Material code
CIP号
CIP code
材料编号
Material code
CIP号
CIP code
C2 CIP391065.69 C56 CIP394034.65 C99 CIP388615.22
C4 CIP392617.54 C57 CIP394034.7 C100 CIP389468.3
C5 CIP392634.52 C58 CIP394579.36 C101 CIP390637.1
C8 CIP393227.66 C59 CIP394600.52 C102 CIP391180.6
C9 CIP393228.67 C60 CIP394611.112 C103 CIP391533.1
C10 CIP393371.164 C61 CIP394613.139 C104 CIP391724.1
C11 CIP391004.18 C62 CIP394613.32 C105 CIP392032.2
C13 CIP393280.64 C63 CIP394614.117 C106 CIP392740.4
C14 CIP391047.34 C64 CIP394881.8 C107 CIP392745.7
C15 CIP391058.175 C65 CIP395186.6 C108 CIP392759.1
C16 CIP393085.5 C66 CIP395193.6 C109 CIP393613.2
C17 CIP398192.213 C67 CIP395195.7 C110 CIP393615.6
C18 CIP398098.119 C68 CIP395196.4 C112 CIP397030.31
C19 CIP398098.203 C70 CIP395432.51 C113 CIP397035.26
C20 CIP398180.253 C71 CIP395434.1 C114 CIP302428.20
C21 CIP398180.289 C72 CIP395436.8 C115 CIP302476.108
C23 CIP398180.612 C74 CIP396311.1 C116 CIP302499.30
C27 CIP398208.33 C79 CIP397029.21 C117 CIP304345.102
C28 CIP398208.58 C80 CIP397036.7 C119 CIP304350.118
C29 CIP398208.704 C81 CIP397039.51 C120 CIP304350.95
C30 CIP301024.14 C82 CIP397044.25 C121 CIP304371.67
C32 CIP301040.63 C83 CIP397055.2 C122 CIP304383.41
C33 CIP300046.22 C84 CIP397065.2 C123 CIP304383.80
C34 CIP300048.12 C85 CIP397067.2 C124 CIP304387.39
C35 CIP300054.29 C86 CIP397069.5 C127 CIP397077.16
C39 CIP300072.1 C87 CIP397073.15 C128 CIP391919.3
C41 CIP300099.22 C88 CIP397078.12 C130 CIP391931.1
C43 CIP379706.27 C89 CIP397079.26 C131 CIP394906.6
C44 CIP385499.11 C90 CIP397079.6 C132 CIP395438.1
C46 CIP388676.1 C91 CIP397098.12 C133 CIP394904.20
C48 CIP390478.9 C92 CIP397099.6 Atl 大西洋Atlantic
C49 CIP391207.2 C93 CIP397100.9 QS9 青薯9号Qingshu 9
C50 CIP391382.18 C94 CIP397196.3 GN2 甘农薯2号Gannongshu 2
C51 CIP392781.1 C95 CIP397196.8 LS3 陇薯3号Longshu 3
C52 CIP392797.22 C96 CIP397197.9 LS6 陇薯6号Longshu 6
C53 CIP392822.3 C97 CIP398014.2 Fa 费乌瑞它Favorita
C54 CIP392973.48 C98 CIP388611.22

Table 2

Primer information for PCR"

引物
Primer
引物序列
Primer sequences (5′-3′)
退火温度
Annealing temperature (℃)
产物片段长度
Product fragment length (bp)
DRO1-F CCATTCAAACATCATCACAAGA 55 1670
DRO1-R GAAATGGAACAACTAGCAGAGA

Fig. 1

PCR detection of StDRO1 genes M: DNA 2000 marker; Number of 1, 2, 3, 4, and 5 represent StDRO1 amplified fragments from materials C2, C4, C5, C8, and C9, respectively."

Fig. 1

PCR detection of StDRO1 genes M: DNA 2000 marker; Number of 1, 2, 3, 4, and 5 represent StDRO1 amplified fragments from materials C2, C4, C5, C8, and C9, respectively."

Fig. 2

Sequence alignment of StDRO1 genes in potato"

Fig. 2

Sequence alignment of StDRO1 genes in potato"

Table 3

Variation of coding region of StDRO1 in different potato materials"

碱基类型
Base type
碱基位置Base site (bp)
64 152 214 297 314 337 353 560 577 620 625 793
参考基因组碱基类型
Base type of reference genome
G G A A C A T T C C C T
变异碱基类型
Variant base type
C A G G T T C A A A A A

Table 3

Variation of coding region of StDRO1 in different potato materials"

碱基类型
Base type
碱基位置Base site (bp)
64 152 214 297 314 337 353 560 577 620 625 793
参考基因组碱基类型
Base type of reference genome
G G A A C A T T C C C T
变异碱基类型
Variant base type
C A G G T T C A A A A A

Table 4

Genotypic frequency and gene frequency of StDRO1 genes in potato"

单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
G64C 110 GG
0.2818 (31)
GC
0.7182 (79)
G
0.6409
C
0.3591
34.5310
G152A 110 GG
0.8364 (92)
GA
0.1636 (18)
G
0.9182
A
0.0818
0.8734
A214G 110 AA
0.3909 (43)
AG
0.6091 (67)
A
0.6955
G
0.3045
21.0940
A297G 110 AA
0.2545 (28)
AG
0.7455 (82)
A
0.6273
G
0.3727
38.8385
C314T 110 CC
0.6818 (75)
CT
0.3182 (35)
C
0.8409
T
0.1591
3.9372
单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
A337T 110 AA
0.6818 (75)
AT
0.3182 (35)
A
0.8409
T
0.1591
3.9372
T353C 110 TT
0.8182 (90)
TC
0.1818 (20)
T
0.9091
C
0.0909
1.1000
T560A 110 AA
0.6182 (68)
AT
0.3818 (42)
A
0.8091
T
0.1909
6.1242
C577A 110 CC
0.2818 (31)
CA
0.7182 (79)
C
0.6409
A
0.3591
34.5310
C620A 110 CC
0.3545 (39)
CA
0.6455 (71)
C
0.6773
A
0.3227
24.9768
C625A 110 CC
0.6545 (72)
CA
0.3455 (38)
C
0.8273
A
0.1727
4.7953
T793A 110 AT
0.7909 (87)
TT
0.2091 (23)
A
0.3955
T
0.6045
47.0682

Table 4

Genotypic frequency and gene frequency of StDRO1 genes in potato"

单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
G64C 110 GG
0.2818 (31)
GC
0.7182 (79)
G
0.6409
C
0.3591
34.5310
G152A 110 GG
0.8364 (92)
GA
0.1636 (18)
G
0.9182
A
0.0818
0.8734
A214G 110 AA
0.3909 (43)
AG
0.6091 (67)
A
0.6955
G
0.3045
21.0940
A297G 110 AA
0.2545 (28)
AG
0.7455 (82)
A
0.6273
G
0.3727
38.8385
C314T 110 CC
0.6818 (75)
CT
0.3182 (35)
C
0.8409
T
0.1591
3.9372
单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
A337T 110 AA
0.6818 (75)
AT
0.3182 (35)
A
0.8409
T
0.1591
3.9372
T353C 110 TT
0.8182 (90)
TC
0.1818 (20)
T
0.9091
C
0.0909
1.1000
T560A 110 AA
0.6182 (68)
AT
0.3818 (42)
A
0.8091
T
0.1909
6.1242
C577A 110 CC
0.2818 (31)
CA
0.7182 (79)
C
0.6409
A
0.3591
34.5310
C620A 110 CC
0.3545 (39)
CA
0.6455 (71)
C
0.6773
A
0.3227
24.9768
C625A 110 CC
0.6545 (72)
CA
0.3455 (38)
C
0.8273
A
0.1727
4.7953
T793A 110 AT
0.7909 (87)
TT
0.2091 (23)
A
0.3955
T
0.6045
47.0682

Table 5

Genetic characteristics of StDRO1 genes population in potato"

单核苷酸多态性位点SNP 纯合度
Homozygosity
杂合度Heterozygosity 有效等位基因数
Effective number of alleles
多态信息含量
Polymorphism information content (PIC)
G64C 0.5397 0.4603 1.8528 0.3544
G152A 0.8498 0.1502 1.1768 0.1390
A214G 0.5764 0.4236 1.7349 0.3339
A297G 0.5324 0.4676 1.8783 0.3583
C314T 0.7324 0.2676 1.3653 0.2318
A337T 0.7324 0.2676 1.3653 0.2318
T353C 0.8347 0.1653 1.1980 0.1516
A560T 0.6911 0.3089 1.4470 0.2612
C577A 0.5397 0.4603 1.8528 0.3544
C620A 0.5629 0.4371 1.7767 0.3416
C625A 0.7142 0.2858 1.4001 0.2449
A793T 0.5219 0.4781 1.9162 0.3638

Table 5

Genetic characteristics of StDRO1 genes population in potato"

单核苷酸多态性位点SNP 纯合度
Homozygosity
杂合度Heterozygosity 有效等位基因数
Effective number of alleles
多态信息含量
Polymorphism information content (PIC)
G64C 0.5397 0.4603 1.8528 0.3544
G152A 0.8498 0.1502 1.1768 0.1390
A214G 0.5764 0.4236 1.7349 0.3339
A297G 0.5324 0.4676 1.8783 0.3583
C314T 0.7324 0.2676 1.3653 0.2318
A337T 0.7324 0.2676 1.3653 0.2318
T353C 0.8347 0.1653 1.1980 0.1516
A560T 0.6911 0.3089 1.4470 0.2612
C577A 0.5397 0.4603 1.8528 0.3544
C620A 0.5629 0.4371 1.7767 0.3416
C625A 0.7142 0.2858 1.4001 0.2449
A793T 0.5219 0.4781 1.9162 0.3638

Table 6

Association analysis of StDRO1 gene polymorphism with root traits in potato"

单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
G64C GG 14.9413±3.1468 a 0.4150±0.0604 a 0.1412±0.0495 a 0.1393±0.0649 a 0.0107±0.0047 a
GC 14.0160±3.7477 a 0.4270±0.1101 a 0.1482±0.0577 a 0.1352±0.0568 a 0.0100±0.0053 a
G152A GG 13.9844±3.5567 a 0.4237±0.1040 a 0.1415±0.0529 b 0.1335±0.0571 a 0.0102±0.0052 a
GA 15.7710±3.5351 a 0.4233±0.0660 a 0.1702±0.0629 a 0.1514±0.0672 a 0.0102±0.0048 a
A214G AA 13.5207±3.4322 a 0.4401±0.1031 a 0.1509±0.0590 a 0.1283±0.0586 a 0.0094±0.0053 a
AG 14.7620±3.6443 a 0.4131±0.0948 a 0.1432±0.0531 a 0.1416±0.0590 a 0.0106±0.0049 a
A297G AA 14.5685±3.2391 a 0.4056±0.0572 a 0.1340±0.0462 a 0.1400±0.0635 a 0.0107±0.0051 a
AG 14.1772±3.7271 a 0.4298±0.1087 a 0.1504±0.0578 a 0.1351±0.0576 a 0.0100±0.0051 a
C314T CC 13.9384±3.4374 a 0.4378±0.1073 a 0.1475±0.0578 a 0.1302±0.0573 a 0.0096±0.0051 a
CT 15.0018±3.8743 a 0.3934±0.0683 b 0.1434±0.0503 a 0.1498±0.0609 a 0.0114±0.0050 a
A337T AA 13.7373±3.4046 b 0.4372±0.1061 a 0.1465±0.0593 a 0.1282±0.0553 b 0.0094±0.0048 b
AT 15.4327±3.7782 a 0.3946±0.0731 b 0.1455±0.0466 a 0.1541±0.0633 a 0.0118±0.0053 a
单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
T353C TT 13.9052±3.5271 b 0.4238±0.1050 a 0.1407±0.0527 b 0.1312±0.0555 b 0.0100±0.0051 a
TC 15.9487±3.5253 a 0.4229±0.0639 a 0.1712±0.0613 a 0.1597±0.0691 a 0.0109±0.0052 a
T560A AA 13.7829±3.3268 a 0.4295±0.1115 a 0.1381±0.0521 a 0.1303±0.0545 a 0.0100±0.0051 a
AT 15.0764±3.9096 a 0.4142±0.0732 a 0.1593±0.0585 a 0.1462±0.0649 a 0.0104±0.0051 a
C577A CC 14.5161±3.7664 a 0.4038±0.0608 a 0.1363±0.0477 a 0.1432±0.0617 a 0.0109±0.0049 a
CA 14.1828±3.5511 a 0.4314±0.1092 a 0.1501±0.0579 a 0.1337±0.0580 a 0.0099±0.0052 a
C620A CC 14.0477±3.6818 a 0.4018±0.0589 a 0.1307±0.0449 b 0.1407±0.0627 a 0.0103±0.0050 a
CA 14.4026±3.5725 a 0.4356±0.1132 a 0.1548±0.0589 a 0.1340±0.0570 a 0.0101±0.0052 a
C625A CC 14.3825±3.5532 a 0.4159±0.0926 a 0.1450±0.0551 a 0.1334±0.0552 a 0.0099±0.0051 a
CA 14.0765±3.7234 a 0.4384±0.1087 a 0.1485±0.0565 a 0.1420±0.0658 a 0.0106±0.0052 a
T793A TT 12.4573±2.7287 b 0.4114±0.0964 a 0.1259±0.0515 b 0.1134±0.0482 b 0.0086±0.0041 a
AT 14.7578±3.6593 a 0.4269±0.0994 a 0.1516±0.0554 a 0.1425±0.0602 a 0.0106±0.0053 a

Table 6

Association analysis of StDRO1 gene polymorphism with root traits in potato"

单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
G64C GG 14.9413±3.1468 a 0.4150±0.0604 a 0.1412±0.0495 a 0.1393±0.0649 a 0.0107±0.0047 a
GC 14.0160±3.7477 a 0.4270±0.1101 a 0.1482±0.0577 a 0.1352±0.0568 a 0.0100±0.0053 a
G152A GG 13.9844±3.5567 a 0.4237±0.1040 a 0.1415±0.0529 b 0.1335±0.0571 a 0.0102±0.0052 a
GA 15.7710±3.5351 a 0.4233±0.0660 a 0.1702±0.0629 a 0.1514±0.0672 a 0.0102±0.0048 a
A214G AA 13.5207±3.4322 a 0.4401±0.1031 a 0.1509±0.0590 a 0.1283±0.0586 a 0.0094±0.0053 a
AG 14.7620±3.6443 a 0.4131±0.0948 a 0.1432±0.0531 a 0.1416±0.0590 a 0.0106±0.0049 a
A297G AA 14.5685±3.2391 a 0.4056±0.0572 a 0.1340±0.0462 a 0.1400±0.0635 a 0.0107±0.0051 a
AG 14.1772±3.7271 a 0.4298±0.1087 a 0.1504±0.0578 a 0.1351±0.0576 a 0.0100±0.0051 a
C314T CC 13.9384±3.4374 a 0.4378±0.1073 a 0.1475±0.0578 a 0.1302±0.0573 a 0.0096±0.0051 a
CT 15.0018±3.8743 a 0.3934±0.0683 b 0.1434±0.0503 a 0.1498±0.0609 a 0.0114±0.0050 a
A337T AA 13.7373±3.4046 b 0.4372±0.1061 a 0.1465±0.0593 a 0.1282±0.0553 b 0.0094±0.0048 b
AT 15.4327±3.7782 a 0.3946±0.0731 b 0.1455±0.0466 a 0.1541±0.0633 a 0.0118±0.0053 a
单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
T353C TT 13.9052±3.5271 b 0.4238±0.1050 a 0.1407±0.0527 b 0.1312±0.0555 b 0.0100±0.0051 a
TC 15.9487±3.5253 a 0.4229±0.0639 a 0.1712±0.0613 a 0.1597±0.0691 a 0.0109±0.0052 a
T560A AA 13.7829±3.3268 a 0.4295±0.1115 a 0.1381±0.0521 a 0.1303±0.0545 a 0.0100±0.0051 a
AT 15.0764±3.9096 a 0.4142±0.0732 a 0.1593±0.0585 a 0.1462±0.0649 a 0.0104±0.0051 a
C577A CC 14.5161±3.7664 a 0.4038±0.0608 a 0.1363±0.0477 a 0.1432±0.0617 a 0.0109±0.0049 a
CA 14.1828±3.5511 a 0.4314±0.1092 a 0.1501±0.0579 a 0.1337±0.0580 a 0.0099±0.0052 a
C620A CC 14.0477±3.6818 a 0.4018±0.0589 a 0.1307±0.0449 b 0.1407±0.0627 a 0.0103±0.0050 a
CA 14.4026±3.5725 a 0.4356±0.1132 a 0.1548±0.0589 a 0.1340±0.0570 a 0.0101±0.0052 a
C625A CC 14.3825±3.5532 a 0.4159±0.0926 a 0.1450±0.0551 a 0.1334±0.0552 a 0.0099±0.0051 a
CA 14.0765±3.7234 a 0.4384±0.1087 a 0.1485±0.0565 a 0.1420±0.0658 a 0.0106±0.0052 a
T793A TT 12.4573±2.7287 b 0.4114±0.0964 a 0.1259±0.0515 b 0.1134±0.0482 b 0.0086±0.0041 a
AT 14.7578±3.6593 a 0.4269±0.0994 a 0.1516±0.0554 a 0.1425±0.0602 a 0.0106±0.0053 a

Table 7

Association analysis of different SNP site combinations with surface area and fresh weight in potato root"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根表面积
Surface area (cm2)
鲜重
Fresh weight (g)
7-1 337AA+353TT+793AT 13.7148±3.3564 ab 0.1290±0.0530 ab
7-2 337AA+353TT+793TT 12.0009±2.2114 b 0.1028±0.0364 b
7-3 337AA+353TC+793AT 16.0900±3.6150 a 0.1532±0.0674 ab
7-4 337AA+353TC+793TT 14.7243±3.3069 ab 0.1583±0.0783 ab
7-5 337AT+353TT+793AT 15.3848±3.8763 ab 0.1515±0.0621 ab
7-6 337AT+353TT+793TT 11.6084±2.0201 b 0.1250±0.0230 ab
7-7 337AT+353TC+793AT 16.7491±3.0515 a 0.1808±0.0621 a

Table 7

Association analysis of different SNP site combinations with surface area and fresh weight in potato root"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根表面积
Surface area (cm2)
鲜重
Fresh weight (g)
7-1 337AA+353TT+793AT 13.7148±3.3564 ab 0.1290±0.0530 ab
7-2 337AA+353TT+793TT 12.0009±2.2114 b 0.1028±0.0364 b
7-3 337AA+353TC+793AT 16.0900±3.6150 a 0.1532±0.0674 ab
7-4 337AA+353TC+793TT 14.7243±3.3069 ab 0.1583±0.0783 ab
7-5 337AT+353TT+793AT 15.3848±3.8763 ab 0.1515±0.0621 ab
7-6 337AT+353TT+793TT 11.6084±2.0201 b 0.1250±0.0230 ab
7-7 337AT+353TC+793AT 16.7491±3.0515 a 0.1808±0.0621 a

Table 8

Association analysis of different SNP site combinations with average diameter in potato root"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
平均根系直径
Average diameter (mm)
8-1 314CC+337AA 0.4420±0.1073 a
8-2 314CC+337AT 0.3794±0.0992 a
8-3 314CT+337AA 0.3708±0.0600 a
8-4 314CT+337AT 0.3971±0.0698 a

Table 8

Association analysis of different SNP site combinations with average diameter in potato root"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
平均根系直径
Average diameter (mm)
8-1 314CC+337AA 0.4420±0.1073 a
8-2 314CC+337AT 0.3794±0.0992 a
8-3 314CT+337AA 0.3708±0.0600 a
8-4 314CT+337AT 0.3971±0.0698 a

Table 9

Association analysis of different SNP site combinations with root volume in potato"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根体积
Root volume (cm3)
9-1 152GG+353TT+620CC+793AT 0.1399±0.0441 bc
9-2 152GG+353TT+620CC+793TT 0.0967±0.0229 c
9-3 152GG+353TT+620CA+793AT 0.1500±0.0558 bc
9-4 152GG+353TT+620CA+793TT 0.1344±0.0561 bc
9-5 152GG+353TC+620CA+793AT 0.1343±0.0098 bc
9-6 152GG+353TC+620CA+793TT 0.2247±0.0198 a
9-7 152GA+353TC+620CC+793AT 0.1347±0.0494 bc
9-8 152GA+353TC+620CC+793TT 0.1754±0.0511 ab
9-9 152GA+353TC+620CA+793AT 0.2186±0.0543 a
9-10 152GA+353TC+620CA+793TT 0.1053±0.0553 bc

Table 9

Association analysis of different SNP site combinations with root volume in potato"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根体积
Root volume (cm3)
9-1 152GG+353TT+620CC+793AT 0.1399±0.0441 bc
9-2 152GG+353TT+620CC+793TT 0.0967±0.0229 c
9-3 152GG+353TT+620CA+793AT 0.1500±0.0558 bc
9-4 152GG+353TT+620CA+793TT 0.1344±0.0561 bc
9-5 152GG+353TC+620CA+793AT 0.1343±0.0098 bc
9-6 152GG+353TC+620CA+793TT 0.2247±0.0198 a
9-7 152GA+353TC+620CC+793AT 0.1347±0.0494 bc
9-8 152GA+353TC+620CC+793TT 0.1754±0.0511 ab
9-9 152GA+353TC+620CA+793AT 0.2186±0.0543 a
9-10 152GA+353TC+620CA+793TT 0.1053±0.0553 bc
[1] 李彦军, 耿伟, 史超, 许世霖, 孙振营. 马铃薯营养特性及产业发展前景. 中国果菜, 2017, 37(8):16-18.
Li Y J, Geng W, Shi C, Xu S L, Sun Z Y. Nutritional characteristics and industrial development prospect of potato. China Fruit Veget, 2017, 37(8):16-18 (in Chinese with English abstract).
[2] Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends Plant Sci, 2014, 19:419-425.
[3] 李秉钧, 颜耀, 吴文景, 吴鹏飞, 邹显花, 马祥庆. 环境因子对植物根系及其构型的影响研究进展. 亚热带水土保持, 2019, 31(3):41-45.
Li B J, Yan Y, Wu W J, Wu P F, Zou X H, Ma X Q. Study progress on the impact of environment factor to the plant root system and configuration. Subtrop Soil Water Conserv, 2019, 31(3):41-45 (in Chinese with English abstract).
[4] Henry A, Dixit S, Mandal N P, Anantha M S, Torres R, Kumar A. Grain yield and physiological traits of rice lines with the drought yield QTL qDTY12.1 showed different responses to drought and soil characteristics in upland environments. Funct Plant Biol, 2014, 41:1066-1077.
[5] Meijon M, Satbhai S B, Tsuchimatsu T, Busch W. Genome-wide association study using cellular traits identifies a new regulator of root development inArabidopsis. Nat Genet, 2014, 46:77-81.
[6] Porter G A, Bradbury W B, Sisson J A, Opena G B, McBurnie J C. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron J, 1999, 91:416-425.
[7] Fabeiro C, de Santa Olalla F M, de Juan J A. Yield and size of deficit irrigated potatoes. Agric Water Manage, 2001, 48:255-266.
[8] Yuan B Z, Nishiyama S, Kang Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63:153-167.
[9] Uga Y, Okuno K, Yano M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot, 2011, 62:2485-2494.
[10] Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45:1097-1102.
[11] Guseman J M, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J, 2017, 89:1093-1105.
[12] Waite J M, Collum T D, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. Plant Mol Biol, 2020, 103:197-210.
[13] 梁文君. 马铃薯StDRO1基因的功能验证. 甘肃农业大学硕士学位论文,甘肃兰州, 2020.
Liang W J. Functional Verification of Potato StDRO1 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2020 (in Chinese with English abstract).
[14] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014, 80:283-383.
[15] Toubiana D, Cabrera R, Salas E, Maccera C, Franco Dos Santos G, Cevallos D, Lindqvist-Kreuze H, Lopez J M, Maruenda H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. Plant J, 2020, 103:2193-2210.
[16] Deblonde P M K, Ledent J F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron, 2001, 14:31-41.
[17] Ashraf A, Rehman O U, Muzammil S, Lon J, Naz A A, Rasool F, Ali G M, Zafar Y, Khan M R. Evolution of deeper rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One, 2019, 14:e0214145.
[18] Omori F, Mano Y. QTL mapping of root angle in F2 populations from maize B73× teosinte Zea luxurians. Plant Root, 2007, 1:57-65.
[19] 蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019.
蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019.
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract).
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract).
[20] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786.
秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786.
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract).
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract).
[21] 梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458.
梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458.
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract).
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract).
[22] Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12.
Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12.
[23] Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355.
Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355.
[24] Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677.
Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677.
[25] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410.
Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410.
[26] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898.
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898.
[27] Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279.
Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279.
[28] Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999.
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999.
[29] Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322.
Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322.
[30] Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630.
Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[3] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[6] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[7] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[8] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[9] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[10] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[11] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[12] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[15] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!