[1] |
Daryanto S, Wang L, Jacinthe P A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manage, 2017,179:18-33.
|
[2] |
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018,44:988-999.
|
|
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018,44:988-999 (in Chinese with English abstract).
|
[3] |
Rao D E, Chaitanya K. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant, 2016,60:201-218.
|
[4] |
Zargar S M, Gupta N, Nazir M, Mahajan R, Malik F A, Sofi N R, Shikari A B, Salgotra R. Impact of drought on photosynthesis: molecular perspective. Plant Gene, 2017,11:154-159.
|
[5] |
秦娜, 许为钢, 齐学礼, 赵明忠, 张磊. 干旱胁迫下郑麦7698的抗旱性能及光合特性分析. 河南农业科学, 2018,47(2):7-11.
|
|
Qin N, Xu W G, Qi X L, Zhao M Z, Zhang L. Analysis of drought resistance and photosynthetic characteristics of Zhengmai 7698 under drought stress. J Henan Agric Sci, 2018,47(2):7-11 (in Chinese with English abstract).
|
[6] |
Ma J, Lyu C, Xu M, Chen G, Lyu C, Gao Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Poll Res, 2016,23:1768-1778.
|
[7] |
Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the Cyanobacterium synechocystis sp. PCC 6803. Plant Physiol, 2009,149:1076-1086.
|
[8] |
Sakata S, Mizusawa N, Kubota-Kawai H, Sakurai I, Wada H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim Biophy Acta Bioenerg, 2013,1827:50-59.
|
[9] |
Jung K H, Lee J, Dardick C, Seo Y S, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho Y J, Lee G C, Lee Y, An G, Ronald P C. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet, 2008,4:e1000164.
|
[10] |
Kuo W Y, Huang C H, Shih C, Jinn T L. Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio- protocol, 2013,3:e811.
|
[11] |
Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H, Jinn T L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005,139:425-436.
|
[12] |
Du J, Zhu Z, Li W C. Over-expression of exotic superoxide dismutase gene MnSOD and increase in stress resistance in maize. J Plant Physiol Mol Biol, 2006,32:57-63.
|
[13] |
Chai Q, Gan Y, Zhao C, Xu H L, Waskom R M, Niu Y, Siddique K H. Regulated deficit irrigation for crop production under drought stress: a review. Agron Sustain Dev, 2016,36:1-21.
|
[14] |
Akram N A, Ashraf M. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul, 2013,32:663-679.
|
[15] |
Wang Y, Wei S, Wang J, Su X, Suo B, Qin F, Zhao H. Exogenous application of 5-aminolevulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Braz J Bot, 2018,41:275-285.
|
[16] |
Wang Y X, Liu S C, Zhang H L, Zhao Y D, Zhao H J, Liu H S. Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance. Acta Physiol Plant, 2014,36:2195-2202.
|
[17] |
Wang Y, Zhang H, Hou P, Su X, Zhao P, Zhao H, Liu S. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat ( Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul, 2014,73:289-297.
|
[18] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
|
[19] |
Wang C, Zhang Q. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotox Environ Safe, 2017,137:218-224.
|
[20] |
Baek K H, Skinner D Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci, 2003,165:1221-1227.
|
[21] |
Li G, Peng X, Wei L, Kang G. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 2013,529:321-325.
|
[22] |
David M K, John R E. The importance of energy balance in improving photosynthetic productivity. Plant Physiol, 2011,155:70-78.
|
[23] |
刘美, 马志良. 青藏高原东部高寒灌丛生物量分配对模拟增温的响应. 生态学报, 2021,41:1421-1430.
|
|
Liu M, Ma Z L. Response of alpine shrub biomass allocation to simulated warming in the eastern Tibetan Plateau. Acta Ecol Sin, 2021,41:1421-1430 (in Chinese with English abstract).
|
[24] |
施成晓, 陈婷, 王昌江, 秦晓梁, 廖允成. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016,36:483-490.
|
|
Shi C X, Chen T, Wang C J, Qin X L, Liao Y C. Effects of drought stress on seed germination and seedling root and shoot biomass allocation of wheat with different drought resistance. J Triticeae Crops, 2016,36:483-490 (in Chinese with English abstract).
|
[25] |
赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021,47:714-727.
|
|
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Analysis on root traits and drought resistance characteristics of wheat at seedling stage in Shanxi Province. Acta Agron Sin, 2021,47:714-727 (in Chinese with English abstract).
|
[26] |
谢燕, 张庆龙, 胡玲, 王法宏, 李豪圣, 孔令安. PEG胁迫对不同小麦品种幼苗抗旱生理指标的影响. 麦类作物学报, 2017,37:947-954.
|
|
Xie Y, Zhang Q L, Hu L, Wang F H, Li H S, Kong L A. Effects of PEG stress on physiological indexes of drought resistance of different wheat varieties seedlings. J Triticeae Crops, 2017,37:947-954 (in Chinese with English abstract).
|
[27] |
Hendriks P W, Kirkegaard J A, Lilley J M, Gregory P J, Rebetzke G J. A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J Exp Bot, 2016,67:327-340.
|
[28] |
Lastochkina O, Garshina D, Ivanov S, Yuldashev R, Khafizova R, Allagulova C, Fedorova K, Avalbaev A, Maslennikova D, Bosacchi M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants, 2020,9:1810.
|
[29] |
Khadka K, Raizada M N, Navabi A. Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat. Front Plant Sci, 2020,11:1149.
|
[30] |
Balestrasse K B, Tomaro M L, Batlle A, Noriega G O. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010,71:2038-2045.
|
[31] |
Chan K X, Phua S Y, Crisp P A, McQuinn R P, Pogson B J. Learning the languages of the chloroplast: Retrograde signaling and beyond. Annu Rev Plant Biol, 2016,67:25-53.
|
[32] |
Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC Plant Biol, 2020,20:18-33.
|
[33] |
Kannan N D, Kulandaivelu G. Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J Med Plants Res, 2011,5:3929-3935.
|
[34] |
Sarijeva G, Knapp M, Lichtenthaler H K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol, 2007,164:950-955.
|
[35] |
Guan X K, Song L, Wang T C, Turner N C, Li F M. Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. J Agron Crop Sci, 2015,201:253-266.
|
[36] |
Imrul M A, Cao F B, Zhang M, Chen X H, Zhang G P, Wu F B. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One, 2013,8:e77869.
|
[37] |
Liu D, Wu L, Naeem M S, Liu H, Deng X, Xu L, Zhang F, Zhou W. 5-aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant, 2013,35:2747-2759.
|
[38] |
Ali B, Wang B, Ali S, Ghani M, Hayat M, Yang C, Xu L, Zhou W. 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul, 2013,32:604-614.
|
[39] |
Eshaghi S, Andersson B, Barber J. Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett, 1999,446:23-26.
|
[40] |
Niu K, Ma H. The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environ Exp Bot, 2018,155:260-271.
|
[41] |
Weisz D A, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross M L, Pakrasi H B. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in photosystem II. Prac Natl Acad Sci USA, 2017,114:2224-2229.
|
[42] |
Dobakova M, Sobotka R, Tichy M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol, 2009,149:1076-1086.
|