Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 597-607.doi: 10.3724/SP.J.1006.2022.14023
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HUANG Cheng(), LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi*()
[1] | Chen H J, Huang Y H, Huang G J, Huang S S, Chow T J, Lin Y H. SPAP1 is a typical aspartic protease and participates in etheon-mediated leaf senescence SPAP1 is a typical aspartic protease and participates in etheon-mediated leaf senescence. J Plant Physiol, 2015, 180:1-17. |
[2] |
Simões I, Faro C. Structure and function of plant aspartic proteinases. Eur J Biochem, 2004, 271:2067-2075.
doi: 10.1111/j.1432-1033.2004.04136.x |
[3] |
Soares A, Carlton S M R, Simoes I. Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses. J Exp Bot, 2019, 70:2059-2076.
doi: 10.1093/jxb/erz034 pmid: 30715463 |
[4] |
Tamura T, Terauchi K, Kiyosaki T, Asakura T, Funaki J, Matsumoto I, Misaka T, Abe K. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds. J Plant Physiol, 2007, 164:470-477.
doi: 10.1016/j.jplph.2006.02.009 |
[5] | Huang J, Zhao X, Cheng K, Jiang Y, Ou-Yang Y, Xu C. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. J Exp Bot, 2013, 11:3351-3360. |
[6] |
Phan H A, Iacuone S, Parish L R W. Arabidopsis thaliana Arabidopsis thaliana. Plant Cell, 2011, 23:2209-2224.
doi: 10.1105/tpc.110.082651 |
[7] |
Xia Y, Suzuki H, Borevitz J, Blout J, Guo Z, Patel K, Dixon R A, Lamb C. Arabidopsis disease resistance signaling Arabidopsis disease resistance signaling. EMBO J, 2014, 23:980-988.
doi: 10.1038/sj.emboj.7600086 |
[8] |
Prasad B D, Creissen G, Lamb C, Chattoo B. Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis. Mol Plant-Microbe Interact, 2009, 22:1635-1644.
doi: 10.1094/MPMI-22-12-1635 |
[9] |
Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep, 2005, 6:282-288.
doi: 10.1038/sj.embor.7400357 |
[10] |
Gao H, Zhang Y H, Wang W L, Zhao K K, Liu C M, Bai L, Li R, Guo Y. Two membrane-anchored aspartic proteases contribute to pollen and ovule development. Plant Physiol, 2017, 173:219-239.
doi: 10.1104/pp.16.01719 |
[11] |
Yao X, Xiong W, Ye T, Wu Y. ASPG1 gene confers drought avoidance in Arabidopsis ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot, 2012, 63:2579-2593.
doi: 10.1093/jxb/err433 |
[12] | Shen W, Yao X, Ye T, Ma S, Liu X, Yin X. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination. Plant Cell Physiol, 2018, 59:1415-1431. |
[13] |
Faro C, Gal S. Arabidopsis genome Arabidopsis genome. Curr Protein Pept Sci, 2005, 6:493-500.
doi: 10.2174/138920305774933268 |
[14] |
Finn R D, Tate J, Mistry J, Coggill P C, Sammut S J, Hotz H R, Ceric G, Forslund K, Eddy S R, Sonnhammer E L L, Bateman A. The Pfam protein families database. Nucleic Acids Res, 2008, 36:D281-D288.
doi: 10.1093/nar/gkm960 |
[15] |
Potter S C, Luciani A, Eddy S R. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46:W200-W204.
doi: 10.1093/nar/gky448 |
[16] |
Marchler B A, Bryant S H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res, 2004: 32:327-331.
pmid: 15215404 |
[17] |
Chen F, Foolad M R. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol, 1997, 35:821-831.
pmid: 9426602 |
[18] |
Chen J, Ouyang Y, Wang L, Xie W, Zhang Q. Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and ylogenetic relation. Gene, 2009, 442:108-118.
doi: 10.1016/j.gene.2009.04.021 |
[19] |
Nakano T, Murakami S, Shoji T, Yoshida S, Sato Y F. A novel protein with DNA binding activity from tobacco chloroplastroplast nucleoids. Plant Cell, 1997, 9:1673-1682.
pmid: 9338968 |
[20] |
Castanheira P, Samyn B, Sergeant K, Clemente J C, Dunn B M, Pires E. Activation, proteolytic processing, and peptide specificity of recombinant cardosin A. J Biol Chem, 2005, 280:13047-13054.
pmid: 15677463 |
[21] |
Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23:2947-2948.
pmid: 17846036 |
[22] |
Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37:W202-W208.
doi: 10.1093/nar/gkp335 |
[23] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[24] |
Lescot M, Patrice D. cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30:325-327.
doi: 10.1093/nar/30.1.325 |
[25] |
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45:D1040-D1045.
doi: 10.1093/nar/gkw982 |
[26] |
Wang Y, Tang H B, Debarry J D. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40:e49.
doi: 10.1093/nar/gkr1293 |
[27] |
Tang H B, Bowers J E, Wang X Y, Ming R, Alam M, Paterson A H. Perspective-synteny and collinearity in plant genomes. Science, 2008, 320:486-488.
doi: 10.1126/science.1153917 |
[28] |
Muylu A, Gal S. Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant, 1999, 105:569-576.
doi: 10.1034/j.1399-3054.1999.105324.x |
[29] |
Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H. Arabidopsis thaliana Arabidopsis thaliana. Plant Physiol Biochem, 2008, 46:724-729.
doi: 10.1016/j.plaphy.2008.04.007 |
[30] |
Guo R R, Xu X Z, Carole B, Li X Q, Gao M, Zheng Y, Wang X P. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genomics, 2013, 14:1-18.
doi: 10.1186/1471-2164-14-1 |
[31] |
Cao S, Guo M, Wang C. Populus trichocarpa and identification of the potential PtAPs involved in wood formation Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biol, 2019, 19:1-17.
doi: 10.1186/s12870-018-1600-2 |
[32] | Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y. Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 43:14-93. |
[33] |
Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290:1151-1155.
pmid: 11073452 |
[34] |
Cheng F, Mandáková T, Wu J, Xie Q, Lysak M, Wang X. Deciering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell, 2013, 25:1541-1554.
doi: 10.1105/tpc.113.110486 |
[35] |
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 2010, 11:97-108.
doi: 10.1038/nrg2689 |
[1] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
[2] | LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947. |
[3] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[4] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[5] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[6] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[7] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[8] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[9] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[10] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[11] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[12] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[13] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[14] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[15] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
|