欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 755-763.doi: 10.3724/SP.J.1006.2019.84084

• 耕作栽培·生理生化 • 上一篇    下一篇

甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系

史文卿1,张彬彬1,柳洪鹃1,赵庆鑫2,史春余1,*(),王新建1,司成成1   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2山东省农业技术推广总站, 山东济南 250100
  • 收稿日期:2018-06-20 接受日期:2018-12-24 出版日期:2019-05-12 发布日期:2019-02-01
  • 通讯作者: 史春余 E-mail:scyu@sdau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31371577);山东省薯类产业创新团队首席专家项目(SDAIT-16-01)

Response mechanism of sweet potato storage root formation and bulking to soil compaction and its relationship with yield

Wen-Qing SHI1,Bin-Bin ZHANG1,Hong-Juan LIU1,Qing-Xin ZHAO2,Chun-Yu SHI1,*(),Xin-Jian WANG1,Cheng-Cheng SI1   

  1. 1 College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2 Shandong Province Agricultural Technology Extension Station, Jinan 250100, Shandong, China
  • Received:2018-06-20 Accepted:2018-12-24 Online:2019-05-12 Published:2019-02-01
  • Contact: Chun-Yu SHI E-mail:scyu@sdau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371577);the Potato Innovation Program for Chief Expert of Shandong Province(SDAIT-16-01)

摘要:

为探讨甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系, 以源库特征差异显著的食用型甘薯品种“北京553”和“龙薯9号”为试验材料, 设置不同的土壤紧实度处理, 研究土壤紧实度调控甘薯块根产量的生理生态原因。结果表明, 降低土壤紧实度, 全生育期耕作层土壤的非毛管孔隙度显著提高。在块根形成期(20~40 d), 随土壤紧实度降低, 耕作层土壤的最高温度提高、最低温度降低, 温度日较差显著提高。在甘薯块根膨大期(45~165 d), 与对照相比, 疏松处理可以提高块根中蔗糖合酶(SS)和腺苷二磷酸葡萄糖焦磷酸化酶(ADPGPPase)活性, 增加淀粉含量; 提高块根中干物质积累初始势、干物质积累速率和功能叶 13C同化物在块根中的分配比例。在收获时, 疏松处理显著提高单薯重和收获指数, 北京553和龙薯9号分别增产20.01%~24.25%和21.64%~27.78%。

关键词: 甘薯, 土壤紧实度, 块根形成, 块根膨大, 产量

Abstract:

Field experiments were performed using two sweet potato [Ipomoea batatas L. (Lam.)].cultivars (‘Beijing 553’ and ‘Longshu 9’) with significant differences in source sink characteristics. The physiological and ecological mechanisms of regulation of soil compaction on storage root yield were studied under different soil compaction treatments. The non-capillary porosity of plough horizon increased significantly during the whole growth period with the decrease of soil compactness. During storage root formation (20-40 d), the minimum temperature was significantly decreased, the maximum temperature and diurnal temperature range of plough layer were significantly increased with the decrease of soil compactness. Compared with the control, the loose treatment could increase the activities of sucrose synthase (SS) and adenosine diphosphate glucose pyrophosphorylase (ADPGPPase) in storage roots, also the starch content, the initial dry matter accumulation potential, dry matter accumulation rate and the distribution ratio of 13C assimilates from functional leaf to storage root. At harvest period the average weight per storage root and harvest index were significantly increased in the loose treatment, Beijing 553 and Longshu 9 increased production by 20.01% to 24.25% and 21.64% to 27.78%, respectively.

Key words: sweet potato, soil compaction, root formation, tuberous thickening, yield

表1

主要生长时期土壤物理性状"

年份
Year
栽后天数
Days after planting
(d)
处理
Treatment
土层深度
Depth of
soil layer
(cm)
土壤紧实度
Soil compaction
(kPa)
容重
Bulk density
(g cm-3)
总孔隙度
Bulk porosity
(%)
毛管孔隙度
Capillary
porosity
(%)
非毛管孔隙度Non-capillary
porosity
(%)
2014 0 SS 5-10 251.33 e 1.25 c 52.29 a 32.71 c 19.58 a
15-20 264.22 de 1.28 bc 51.46 a 34.31 bc 17.15 b
CK 5-10 384.00 c 1.30 bc 50.89 ab 38.13 ab 12.76 d
15-20 405.44 c 1.31 bc 50.67 ab 38.68 ab 11.99 d
JS 5-10 833.22 b 1.40 a 47.49 b 39.04 ab 8.45 g
15-20 1085.00 a 1.42 a 46.66 b 39.69 a 6.97 h
160 SS 5-10 267.93 de 1.26 c 52.07 a 35.71 bc 16.36 b
15-20 287.86 d 1.29 bc 51.16 a 36.37 b 14.79 c
CK 5-10 403.33 c 1.32 ab 50.50 ab 39.52 ab 10.98 e
15-20 432.11 c 1.33 ab 50.01 ab 40.68 a 9.33 f
JS 5-10 865.56 b 1.42 a 46.82 b 41.40 a 5.42 i
15-20 1125.00 a 1.43 a 46.41 b 41.69 a 4.72 j
2015 0 SS 5-10 261.00 d 1.25 c 51.17 ab 30.98 c 20.19 a
15-20 271.47 d 1.27 bc 51.68 ab 32.49 c 19.19 a
CK 5-10 402.17 c 1.25 c 52.83 a 34.68 bc 18.15 b
15-20 416.40 c 1.30 b 51.90 a 36.96 ab 14.94 c
JS 5-10 876.28 b 1.39 ab 47.11 b 37.64 ab 9.47 e
15-20 1130.00 a 1.43 a 47.21 b 38.23 ab 8.99 e
160 SS 5-10 277.72 d 1.26 c 51.40 ab 34.98 bc 16.42 c
15-20 289.67 d 1.28 bc 51.87 a 36.15 b 15.71 c
CK 5-10 421.56 c 1.27 bc 51.98 a 36.43 b 15.56 c
15-20 430.07 c 1.31 b 50.99 ab 39.96 a 11.03 d
JS 5-10 901.83 b 1.42 ab 46.99 b 39.39 a 7.60 f
15-20 1190.44 a 1.44 a 47.17 b 39.73 a 7.45 f

表2

土壤紧实度对甘薯生长前期耕作层土壤温度的影响"

年份
Year
土层深度
Depth of
soil layer
(cm)
处理
Treatment
栽后20 d 20 days after planting 栽后30 d 30 days after planting 栽后40 d 40 days after planting
最高
温度
MAT
最低
温度
MIT
日较差
DTR
最高
温度
MAT
最低
温度
MIT
日较差
DTR
最高
温度
MAT
最低
温度
MIT
日较差
DTR
2014 10 SS 34.3 a 17.8 b 16.5 a 39.8 a 19.8 a 20.0 a 33.4 a 25.2 a 8.2 a
CK 34.1 a 18.8 b 15.3 a 37.9 a 20.6 a 17.3 a 32.9 a 25.4 a 7.5 a
JS 33.0 a 19.9 a 13.1 b 34.5 b 21.1 a 13.4 b 33.3 a 25.7 a 7.6 a
20 SS 28.8 a 18.8 b 10.0 a 31.6 a 21.6 b 11.0 a 30.9 a 25.9 a 5.0 a
CK 28.0 a 19.9 ab 8.1 b 30.8 a 22.1 ab 8.7 b 30.9 a 26.1 a 4.8 a
JS 26.9 a 21.0 a 5.9 c 27.7 a 22.9 a 4.8 c 30.2 a 26.5 a 3.7 b
2015 10 SS 35.3 a 17.4 b 17.9 a 39.0 a 19.4 a 19.7 a 34.3 a 24.4 a 9.9 a
CK 34.8 a 18.4 ab 16.4 b 38.0 ab 19.9 a 18.2 a 33.0 a 24.7 a 8.3 b
JS 33.5 a 19.2 a 14.3 c 35.5 b 21.4 a 14.1 b 34.3 a 25.5 a 8.8 b
20 SS 29.5 a 20.5 b 9.0 a 31.3 a 21.5 b 9.8 a 30.0 a 26.6 a 3.5 a
CK 28.8 a 22.1 ab 6.7 b 30.5 a 23.1 ab 7.5 b 30.0 a 26.5 a 3.5 a
JS 27.5 a 23.3 a 4.25 c 29.5 a 24.3 a 5.3 c 30.5 a 27.1 a 3.5 a

表3

块根产量及收获指数"

年份
Year
品种
Variety
处理
Treatment
块根产量
Root tuber yield
(t hm-2)
生物产量
Biomass
(t hm-2)
单株结薯数
Storage root
(lump plant-1)
单薯重
Fresh weight
(g lump-1)
收获指数
Harvest
index
2014 北京553
Beijing 553
SS 36.22 a 58.24 a 2.65 a 284.70 a 0.62 a
CK 29.15 b 56.72 a 2.53 a 238.30 b 0.51 b
JS 18.62 c 46.86 b 2.11 b 173.35 c 0.40 c
龙薯9号
Longshu 9
SS 53.95 a 73.54 a 2.99 a 360.69 a 0.73 a
CK 42.22 b 71.82 a 2.83 a 308.24 b 0.59 b
JS 20.17 c 54.60 b 2.39 b 175.50 c 0.37 c
2015 北京553
Beijing 553
SS 38.98 a 65.42 a 2.68 a 302.43 a 0.60 a
CK 32.48 b 65.25 a 2.66 a 254.77 b 0.50 b
JS 21.60 c 57.77 b 2.29 b 196.72 c 0.37 c
龙薯9号
Longshu 9
SS 57.90 a 85.62 a 2.97 a 406.31 a 0.68 a
CK 47.60 b 83.52 a 3.07 a 322.50 b 0.57 b
JS 19.75 c 41.64 b 2.77 b 148.38 c 0.47 c

表4

块根干物质积累特征参数(2015年)"

品种
Variety
处理
Treatment
a b k R2 C0 Vmean Vmax Xmax.V D
北京553
Beijing 553
SS 8.21 0.07 277.63 0.93 0.08 1.93 5.01 113.63 144.04
CK 8.68 0.07 236.18 0.94 0.04 1.58 4.30 119.11 149.27
JS 8.56 0.08 132.49 0.95 0.03 0.94 2.53 122.21 141.02
龙薯9号
Longshu 9
SS 5.41 0.05 333.91 0.94 1.49 2.24 4.26 105.94 148.96
CK 5.36 0.05 281.57 0.91 1.32 1.76 3.32 113.62 160.18
JS 5.35 0.04 147.78 0.90 0.70 0.81 1.54 128.66 181.45

表5

栽秧后100 d功能叶13C同化物在不同器官的分配比例(2015年)"

品种
Variety
处理
Treatment
标记部位
Labeled part
上部
Upper part
下部
Lower part
侧枝
Branch
块根
Storage root
北京553
Beijing 553
SS 0.87 c 0.90 c 4.05 c 35.21 c 58.98 a
CK 1.24 b 1.03 b 5.58 b 50.05 b 42.11 b
JS 2.80 a 2.69 a 8.45 a 61.11 a 24.97 c
龙薯9号
Longshu 9
SS 0.71 c 1.10 b 3.16 b 22.02 c 73.02 a
CK 1.03 b 0.69 c 2.22 c 29.12 b 66.93 b
JS 3.76 a 3.06 a 8.16 a 37.29 a 47.74 c

表6

主要生长时期块根中可溶性糖、蔗糖和淀粉含量(2015年)"

品种
Variety
栽后天数
Days after planting (d)
处理
Treatment
可溶性糖
Soluble sugar
蔗糖
Sucrose
淀粉
Starch
北京553
Beijing 553
65 SS 10.23 a 9.61 a 62.28 a
CK 10.59 a 10.07 a 54.84 b
JS 10.85 a 10.19 a 52.86 b
105 SS 6.58 b 5.68 b 67.96 a
CK 8.59 a 7.57 a 65.69 ab
JS 8.63 a 8.37 a 62.47 b
145 SS 8.80 c 11.89 c 74.06 a
CK 9.88 b 13.77 b 70.38 a
JS 10.69 a 15.17 a 63.95 b
龙薯9号
Longshu 9
65 SS 11.86 b 9.83 b 59.26 a
CK 12.46 b 10.28 b 57.80 a
JS 15.85 a 13.06 a 54.26 a
105 SS 12.76 b 8.16 c 62.86 a
CK 13.34 ab 9.88 b 58.52 ab
JS 14.00 a 13.66 a 53.92 b
145 SS 16.53 a 9.79 c 67.40 a
CK 16.97 a 11.04 b 59.53 b
JS 17.07 a 12.10 a 56.01 b

图1

主要生长时期甘薯块根中蔗糖合酶(SS)活性(2015年) 标以不同字母的值在处理间差异显著(P < 0.05)。缩写同表1。"

图2

主要生长时期块根中腺苷二磷酸葡萄糖焦磷酸化酶活性(2015年) 标以不同字母的值在处理间差异显著(P < 0.05)。缩写同表1。"

[1] Kazuyki W, Toshio K . Studies on the effects of soil physical conditions on the growth and yield of crop plants: III. Effects of the capacity and composition of soil air on the growth and yield of sweet potato plants. Jpn J Crop Sci, 1964,33:418-422.
[2] 史春余, 王振林, 余松烈 . 甘薯光合产物的积累分配及其影响因素. 山东农业大学学报(自然科学版), 2001,32(1):90-94.
Shi C Y, Wang Z L, Yu S L . Accumulation and distribution of photosynthats in sweet potato and the influence factors. J Shandong Agric Univ(Nat Sci Edn), 2001,32(1):90-94 (in Chinese).
[3] Kazuyki W, Toshio K . Studies on the effects of soil physical conditions on the growth and yield of crop plants: IV. Effects of the different soil structures on a few physiological characters of sweet potato plants. Jpn J Crop Sci, 1965,34:409-412.
[4] Kaoru E. Hakabu S . Effect of atmospheric humidity and soil moisture on the translocation of sucroce- 14C in the sweet potato plant . Jpn J Crop Sci, 1962,32:41-44.
[5] 王树钿, 于作庆 . 甘薯在不同土壤条件下高产规律的初步研究. 中国农业科学, 1981,14(1):49-55.
Wang S D, Yu Z Q . A preliminary study on the high-yielding law of sweet potato in different kind of soil. Sci Agric Sin, 1981,14(1):49-55 (in Chinese with English abstract).
[6] 史春余, 王振林, 郭风法, 余松烈 . 土壤通气性对甘薯养分吸收、 14C同化物分配及产量的影响 . 核农学报, 2002,16:232-236.
Shi C Y, Wang Z L, Guo F F, Yu S L . Effects of the soil aeration on nutrient absorption, 14C-assimilates distribution and storage root yield in sweet potato . Acta Agric Nucl Sin, 2002,16:232-236 (in Chinese with English abstract).
[7] 史春余, 王振林, 余松烈 . 土壤通气性对甘薯产量的影响及其生理机制. 中国农业科学, 2001,34:173-178.
Shi C Y, Wang Z L, Yu S L . Effects of soil aeration on sweet potato yield and its physiological mechanism. Sci Agric Sin, 2001,34:173-178 (in Chinese with English abstract).
[8] 柳洪鹃, 史春余, 张立明, 张海峰, 王振振, 柴沙沙 . 钾素对食用型甘薯糖代谢相关酶活性的影响. 植物营养与肥料学报, 2012,18:724-732.
Liu H J, Shi C Y, Zhang L M, Zhang H F, Wang Z Z, Chai S S . Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato. Plant Nutr Fert Sci, 2012,18:724-732 (in Chinese with English abstract).
[9] 董明辉, 赵步洪, 吴翔宙, 陈涛, 杨建昌 . 水稻结实期不同粒位籽粒相关内源激素含量和关键酶活性的差异及其与品质的关系. 中国农业科学, 2008,41:370-380.
Dong M H, Zhao B H, Wu X Y, Chen T, Yang J C . Difference in hormonal content and activities of key enzymes in the grains at different positions on a rice panicle during grain filling and their correlations with rice qualities. Sci Agric Sin, 2008,41:370-380 (in Chinese with English abstract).
[10] 岳向文 . 小麦腺苷二磷酸葡萄糖焦磷酸化酶同工酶类型与淀粉含量关系的研究. 山东农业大学硕士学位论文, 山东泰安, 2008.
Yue X W . Types of Isozyme and the Relationship between Isozymes and Starch Content in Common Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2008 (in Chinese with English abstract).
[11] 夏斌, 郭涛, 王慧, 刘永柱, 张建国, 陈志强 . 水稻淀粉合成关键酶的研究进展. 中国农学通报, 2009,25(22):47-51.
Xia B, Guo T, Wang H, Liu Y Z, Zhang J G, Chen Z Q . Progress in key enzymes of starch synthesis in rice. Chin Agric Sci Bul, 2009,25(22):47-51 (in Chinese with English abstract).
[12] 刘淑云, 董树亭, 胡昌浩, 白萍, 吕新 . 玉米产量和品质与生态环境的关系. 作物学报, 2005,31:571-576.
Liu S Y, Dong S T, Hu C H, Bai P, Lyu X . Relationship between ecological environment and maize yield and quality. Acta Agron Sin, 2005,31:571-576 (in Chinese with English abstract).
[13] 陶志强, 陈源泉, 李超, 袁淑芬, 师江涛, 高旺盛, 隋鹏 . 华北低平原不同播种期春玉米的产量表现及其与气象因子的通径分析. 作物学报, 2013,39:1628-1634.
Tao Z Q, Chen Y Q, Li C, Yuan S F, Shi J T, Gao W S, Sui P . Path analysis between yield of spring maize and meteorological factors at different sowing times in north China low plain. Acta Agron Sin, 2013,39:1628-1634 (in Chinese with English abstract).
[14] 吴元中, 李育民 . 自控温室气象条件对番茄产量的影响. 生态农业研究, 2000,8(4):13-15.
Wu Y Z, Li Y M . Effect of meteorological conditions in self-controlled greenhouse on the yield of tomato. Eco-Agric Res, 2000,8(4):13-15(in Chinese with English abstract).
[15] 熊伟, 杨婕, 吴文斌, 黄丹丹, 曹阳 . 中国水稻生产对历史气候变化的敏感性和脆弱性. 生态学报, 2013,33:509-518.
Xiong W, Yang J, Wu W B, Huang D D, Cao Y . Sensitivity and vulnerability of China’s rice production to observed climate change. Acta Ecol Sin, 2013,33:509-518 (in Chinese with English abstract).
[16] 赵腾飞, 韩亚东, 于晓刚, 商全玉, 张文忠 . 温度对北方粳型超级稻沈农265生长发育及产量的影响. 辽宁农业科学, 2010, ( 5):33-36.
Zhao T F, Han Y D, Yu X G, Shang Q Y, Zhang W Z . Effect of temperature on growth and development and yield of north japonica super rice shennong 265. Liaoning Agric Sci, 2010, ( 5):33-36 (in Chinese).
[17] 王树森, 邓根云 . 地膜覆盖增温机制研究. 中国农业科学, 1991,24(3):74-78.
Wang S S, Deng G Y . A study on the mechanism of soil temperature increasing under plastic mulch. Sci Agric Sin, 1991,24(3):74-78 (in Chinese with English abstract).
[18] 江燕, 史春余, 王振振, 王翠娟, 柳洪鹃 . 地膜覆盖对耕层土壤温度水分和甘薯产量的影响. 中国生态农业学报, 2014,22:627-634.
Jiang Y, Shi C Y, Wang Z Z, Wang C J, Liu H J . Effects of plastic film mulching on arable layer soil temperature, moisture and yield of sweet potato. Chin J Eco-Agric, 2014,22:627-634 (in Chinese with English abstract).
[19] 汪宝卿, 杜召海, 解备涛, 张海燕, 张立明, 张文兰 . 地膜覆盖对土壤水分和夏薯苗期根系建成的影响. 山东农业科学, 2014,46(2):41-45.
Wang B Q, Du Z H, Xie B T, Zhang H Y, Zhang L M, Zhang W L . Effects of film mulching on water content in soil and root formation of summer sweet potato seedling. Shandong Agric Sci, 2014,46(2):41-45 (in Chinese with English abstract).
[20] 李雪英, 朱海波, 刘刚, 侯丽娟, 丛晓飞 . 地膜覆盖对甘薯垄内温度和产量的影响. 作物杂志, 2012, ( 1):121-123.
Li X Y, Zhu H B, Liu G, Hou L J, Cong X F . Effects of plastic film mulching of sweet potato on in-row temperature and yield. Crops, 2012, ( 1):121-123 (in Chinese with English abstract).
[21] 王翠娟, 史春余, 王振振, 柴沙沙, 柳洪鹃, 史衍玺 . 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响. 作物学报, 2014,40:1677-1685.
Wang C J, Shi C Y, Wang Z Z, Chai S S, Liu H J, Shi Y X . Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014,40:1677-1685 (in Chinese with English abstract).
[22] Zhang C F, Huang Y L, Zhou H, Zhang Y, Zhang D W . Effects of plastic film mulching on physical characters of soil and yield and yield components of sweet potato. Agric Sci Tech, 2015,16:2379-2385.
[23] Kim S H, Mizuno K, Fujimura T . Regulated expression of ADP glucose pyrophosphorylase and chalcone synthase during root development in sweet potato. Plant Growth Regul, 2002,38:173-179.
doi: 10.1023/A:1021291616387
[24] Kamali F . Evaluation of root sink ability of sweet potato ( Ipomoea batatas Lam) cultivars on the basis of enzymatic activity in the starch synthesis pathway. J Agron Crop Sci, 2010,177:17-23.
[25] 陈晓光, 史春余, 王振林, 张立明, 张晓冬 . 多效唑对食用甘薯北京553块根淀粉积累及相关酶活性的影响. 中国农业科学, 2012,45:192-198.
Chen X G, Shi C Y, Wang Z L, Zhang L M, Zhang X D . Effect of paclobutrazol on starch accumulation and related enzyme activity of storage root in edible sweet potato cv. Beijing 553. Sci Agric Sin, 2012,45:192-198 (in Chinese with English abstract).
[26] 柳洪鹃, 姚海兰, 史春余, 张立明 . 施钾时期对甘薯济徐23块根淀粉积累与品质的影响及酶学生理机制. 中国农业科学, 2014,47:43-52.
Liu H J, Yao H L, Shi C Y, Zhang L M . Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Sci Agric Sin, 2014,47:43-52 (in Chinese with English abstract).
[1] 唐海明,肖小平,李超,汤文光,郭立君,汪柯,程凯凯,潘孝晨,孙耿. 不同土壤耕作模式对双季水稻生理特性与产量的影响[J]. 作物学报, 2019, 45(5): 740-754.
[2] 陈玉章,田慧慧,李亚伟,柴雨葳,李瑞,程宏波,常磊,柴守玺. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响[J]. 作物学报, 2019, 45(5): 714-727.
[3] 于显枫,张绪成,方彦杰,陈光荣,王红丽,侯慧芝,马一凡,赵记军. 减氮追施和增密对全膜覆盖垄上微沟马铃薯水分利用及生长的影响[J]. 作物学报, 2019, 45(5): 764-776.
[4] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[5] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[6] 金欣欣,姚艳荣,贾秀领,姚海坡,申海平,崔永增,李谦. 基因型和环境对小麦产量、品质和氮素效率的影响[J]. 作物学报, 2019, 45(4): 635-644.
[7] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[8] 凌霄霞,张作林,翟景秋,叶树春,黄见良. 气候变化对中国水稻生产的影响研究进展[J]. 作物学报, 2019, 45(3): 323-334.
[9] 孙凯,刘振,胡恒宇,李耕,刘文涛,杨柳,宁堂原,王彦玲. 有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J]. 作物学报, 2019, 45(3): 401-410.
[10] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[11] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[12] 刘月娥,吕天放,赵久然,王荣焕,徐田军,陈传永,张译天,王元东,刘秀芝. 不同玉米杂交品种吐丝持续期特性及其对播期的响应[J]. 作物学报, 2019, 45(2): 310-315.
[13] 李成江,李大肥,周桂夙,许龙,徐天养,赵正雄. 不同种类生物炭对植烟土壤微生物及根茎病害发生的影响[J]. 作物学报, 2019, 45(2): 289-296.
[14] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[15] 刘妍,刘兆新,何美娟,刘婷如,杨坚群,甄晓宇,栗鑫鑫,李向东,杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响[J]. 作物学报, 2019, 45(1): 131-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[2] 王丽宏;曾昭海;杨光立;李会彬;肖小平;张帆;胡跃高. 六种稻田土壤冬季种植黑麦草功能效应研究[J]. 作物学报, 2007, 33(12): 1972 -1976 .
[3] 徐爱遐;马朝芝;肖恩时;权景春;马长珍;田广文;涂金星;傅廷栋;张改生. 中国西部芥菜型油菜遗传多样性研究[J]. 作物学报, 2008, 34(05): 754 -763 .
[4] 吴能表;朱利泉;王小佳. 槲皮素对SI甘蓝授粉引起的PK活性及相关指标的影响[J]. 作物学报, 2004, 30(10): 996 -1001 .
[5] 翟丙年;孙春梅;王俊儒;李生秀. 氮素亏缺对冬小麦根系生长发育的影响[J]. 作物学报, 2003, 29(06): 913 -918 .
[6] 高玉龙;郭旺珍;王磊;张天真. 一个棉花β-1,3-葡聚糖酶基因全长cDNA的克隆与特征分析[J]. 作物学报, 2007, 33(08): 1310 -1315 .
[7] 李根英;夏先春;何中虎;孙其信;黄承彦. 山东小麦籽粒硬度演变规律研究[J]. 作物学报, 2007, 33(08): 1372 -1374 .
[8] 刘素兰;王长有;王秋英;吉万全. 小麦新种质N9628-2抗白粉病基因的SSR分析[J]. 作物学报, 2008, 34(01): 84 -88 .
[9] 王爱勤;范业赓;赵晓艳;何龙飞;杨丽涛;李杨瑞. 乙烯利诱导甘蔗ACC合成酶基因家族3成员在茎中表达与乙烯释放量和糖分积累的关系[J]. 作物学报, 2008, 34(03): 418 -422 .
[10] 许振柱;于振文;王东;张永丽. 灌溉量对小麦氮素吸收和运转的影响[J]. 作物学报, 2004, 30(10): 1002 -1007 .