欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 365-384.doi: 10.3724/SP.J.1006.2020.91044

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦重要产量性状的主基因+多基因混合遗传分析

解松峰1,2,*,吉万全1,*(),张耀元1,*,张俊杰1,胡卫国3,李俊4,王长有1,张宏1,陈春环1   

  1. 1. 西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室 / 国家小麦改良中心农学院杨凌分中心, 陕西杨凌 712100
    2. 农业部富硒产品开发与质量控制重点实验室 / 富硒食品开发国家地方联合工程实验室 / 中国富硒产业研究院/安康市富硒产品研发中心, 陕西安康 725000
    3. 河南省农业科学院小麦研究中心, 河南郑州 450002
    4. 四川省农业科学院作物研究所, 四川成都610066
  • 收稿日期:2019-07-01 接受日期:2019-09-26 出版日期:2020-03-12 发布日期:2019-10-11
  • 通讯作者: 解松峰,吉万全,张耀元 E-mail:jiwanquan2003@126.com
  • 作者简介:解松峰, E-mail: xiesongfengboheng@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0102004);农业部作物基因资源与种质创制陕西科学观测实验站, 农业部富硒产品开发与质量控制重点实验室(试运行), 陕西省农业科技创新转化项目(NYKJ-2015-037);陕西省创新能力支撑计划项目(2018TD-021);陕西省创新能力支撑计划项目(2018PT-31);富硒食品开发国家地方联合工程实验室(陕西)项目资助

Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat

Song-Feng XIE1,2,*,Wan-Quan JI1,*(),Yao-Yuan ZHANG1,*,Jun-Jie ZHANG1,Wei-Guo HU3,Jun LI4,Chang-You WANG1,Hong ZHANG1,Chun-Huan CHEN1   

  1. 1. College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas / Yangling Sub-centre, National Wheat Improvement Centre, Yangling 712100, Shaanxi, China;
    2. Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Prducts, Ankang 725000, Shaanxi, China;
    3. Wheat Research Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China;
    4. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
  • Received:2019-07-01 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-11
  • Contact: Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG E-mail:jiwanquan2003@126.com
  • Supported by:
    The study was supported by the Key Research and Development Program of China(2016YFD0102004);the Shaanxi Resrarch Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Shaanxi Provincial Agricultural Science and Technology Innovation and Transformation Project(NYKJ-2015-037);the Innovation Capability Support Program Project in Shaanxi Province(2018TD-021);the Innovation Capability Support Program Project in Shaanxi Province(2018PT-31);the National-Local Joint Engineering Laboratory of Se-enriched Food Development (Shaanxi).

摘要:

以单株产量等为代表的重要性状是选育小麦高产良种的主攻目标性状, 分析小麦重要产量性状的数量遗传特性, 为深入研究其遗传机制提供依据。本研究选用品冬34为母本(P1)和BARRAN为父本(P2)配置杂交组合, 在2年4个环境下应用主基因+多基因混合遗传模型方法对该组合单世代(P1、P2、RIL7:8、RIL8:9)单株产量、千粒重、株高、穗下节间长、旗叶上节间长和分蘖数进行遗传及相关分析。结果表明, 除千粒重和分蘖数外, 其余性状间均显著或极显著相关, 穗下节间长与旗叶上节间长平均相关系数达0.91 (P≤0.001)。最优遗传模型对于单株产量是4对加性上位性主基因+多基因遗传模型, 其主基因加性效应值分别为3.78、2.89、-6.18和0.15, 多基因遗传率为86.23%; 对于千粒重是2对互补作用主基因+加性效应多基因混合遗传模型, 多基因加性效应值是22.37, 主基因遗传率为66.96%, 多基因遗传率为28.25%; 对于株高是2对累积作用主基因+加性作用多基因混合遗传模型, 控制株高的第1对主基因加性效应值是5.15, 加性×加性上位性互作效应值为-9.66, 多基因加性效应值为-9.31, 主基因遗传率为58.57%, 多基因遗传率为39.71%; 对于穗下节间长和旗叶上节间长均是加性-上位性多基因遗传模型, 其主基因遗传率分别为97.65%和99.14%; 对于分蘖数是加性-上位性多基因混合遗传模型, 主基因遗传率为78.89%, 多基因遗传率为19.87%。这些性状在多个环境下主要受主基因+多基因混合遗传控制。在选育优良品系的过程中, 要兼顾适应生态环境条件的重要表现, 进一步为筛选与目标性状紧密连锁标记及推进分子标记辅助选择提供理论依据。

关键词: 小麦, 产量性状, 相关分析, 主基因+多基因, 遗传效应

Abstract:

The important traits represented by yield per plant are the main target traits in high-yield breeding of wheat, and analysing then the quantitative genetic characteristics will provide a basis for further study on the genetic mechanism. In this study, we selected the winter Pingdong 34 as the female parent (P1) and the Barran as the male parent (P2) to configure the hybrid combination, and applied the main gene + polygene mixed genetic model method to analyse the length and number of tillers in the single generation (P1, P2) RIL7:8, RIL8:9 at four environments in two years genetic model and correlation among yield per plant, 1000-grain weight, plant height, internode length, internode length and number of tillers. There were significant or extremely significant condation among all the traits, except for the 1000-grain weight and number of tillers. The average correlation coefficient between the internodes and the upper leaves of the flag was 0.91 (P ≤ 0.001). The optimal genetic model for yield per plant was four pairs of additive epigenetic gene + polygenic genetic model with the main gene additive effect values of 3.78, 2.89, -6.18, and 0.15, respectively, and the multigene heritability of 86.23%. The optimal genetic model of 1000-grain weight of a mixed genetic model with two pairs of complementary main genes + additive effects. The multi-gene additive effect value was 22.37, the main gene heritability was 66.96%, and the multi-gene heritability was 28.25%. The optimal genetic model of plant height was a mixed genetic model of two pairs of cumulative main genes + additive multigenes. The additive value of the first pair of main genes controlling plant height was 5.15. Additive × additive epistatic interaction value was -9.66, the multigene additive effect value was -9.31, the major gene heritability was 58.57%, and the polygene heritability was 39.71%. The optimal genetic model of the internode length below spike above the flag leaf was the additive-superordinate multi-gene genetic model, and the main gene heritability was 97.65% and 99.14%, respectively. The optimal genetic model of the number of tillers was an additive-superordinate multi-gene mixed genetic model with a genetic rate of 78.89% for primary genes and 19.87% for multiple genes. These traits were mainly dominated by the combination of major gene + polygene in multiple environments. In the process of breeding excellent strains, it is necessary to take into account the important performances adapting to the ecological environment conditions, and further provide a theoretical basis for screening closely linked to target traits markers and promoting molecular marker-assisted selection.

Key words: wheat, yied traits, conrelation analysis, major gene plus polygen, genetic effects

表1

重组自交系及其亲本穗部性状最佳线性无偏预测描述性分析"

环境Environ. 亲本Parent 重组自交系群体 RIL
品东34
Pindong 34
Warran
MY11847
最小值
Min.
最大值
Max.
平均数
Average
标准差
SD
变异系数CV (%) 遗传力 Heritability 偏度系数
Skew.
峰度系数
Kurt.
单株产量GYP (g)
E1 36.45 5.53 1.18 89.83 24.32 14.41 0.59 0.86 1.02** 1.55**
E2 18.66 6.24 2.03 65.55 23.31 9.93 0.43 0.47 0.66** 1.11**
E3 28.50 15.89 2.85 71.32 25.56 11.03 0.43 0.77 0.66** 0.82**
E4 28.56 24.38 1.10 47.20 16.97 8.00 0.47 0.75 0.48** 0.23**
Average 28.04 13.01 1.79 68.48 22.54 10.84 0.48 0.71 0.705** 0.9275**
千粒重TGW (g)
E1 55.85 26.00 23.25 66.50 45.12 7.43 0.16 0.33 0.09 -0.29
E2 58.40 24.65 24.18 66.17 45.01 7.09 0.16 0.37 -0.08 -0.26
E3 57.08 24.15 18.90 59.70 38.30 7.37 0.19 0.76 -0.10 -0.20
E4 71.20 68.15 11.88 71.20 47.89 8.27 0.17 0.63 -0.25 0.35**
Average 60.63 35.74 19.55 65.89 44.08 7.54 0.17 0.52 -0.08 -0.10
株高 PH (cm)
E1 88.00 86.00 30.00 158.00 96.51 19.09 0.20 0.91 -0.21 -0.07
E2 86.50 90.50 50.80 161.80 108.26 22.05 0.20 0.92 -0.18 -0.39
E3 85.75 99.33 39.25 149.25 102.88 18.74 0.18 0.94 -0.43 0.02
E4 94.67 102.00 33.67 155.00 104.76 20.89 0.20 0.92 -0.35 -0.24
Average 88.73 94.46 38.43 156.01 103.10 20.19 0.20 0.92 -0.29 -0.17
分蘖数NTP
E1 28.00 16.00 3.00 79.00 20.48 7.33 0.36 0.57 1.94** 2.54**
E2 15.75 18.25 6.50 54.00 22.02 5.63 0.26 0.42 1.09** 3.30**
E3 23.00 35.50 9.00 59.00 28.60 7.43 0.26 0.90 0.58** 0.56**
E4 10.00 17.00 3.33 21.00 9.76 2.55 0.26 0.44 0.96** 2.10**
Average 19.19 21.69 5.46 53.25 20.22 5.74 0.28 0.60 1.14** 4.63**
穗下节间长SIL (cm)
E1 36.00 34.00 16.00 66.00 40.40 9.12 0.23 0.89 0.00 -0.17
E2 33.25 33.75 18.60 66.00 40.45 8.54 0.21 0.88 -0.11 -0.20
E3 31.45 32.70 14.23 54.10 35.31 6.42 0.18 0.86 -0.32 0.20*
E4 32.83 33.50 16.83 62.50 39.13 8.27 0.21 0.91 -0.23 -0.24
Average 33.38 33.49 16.42 62.15 38.82 8.09 0.21 0.88 -0.16 -0.10
旗叶上节间长FIL (cm)
E1 13.00 21.00 3.00 46.00 20.19 6.94 0.34 0.87 0.27** 0.18*
E2 11.75 20.00 3.80 42.20 20.16 6.35 0.32 0.89 0.15* 0.14**
E3 9.50 14.65 0.00 30.00 15.39 4.31 0.28 0.59 0.01 0.51**
E4 11.00 17.50 2.50 35.00 18.40 5.58 0.30 0.89 0.06 -0.02
Average 11.31 18.29 2.33 38.30 18.53 5.80 0.31 0.81 0.12* 0.21*

图1

RIL 群体重要产量性状的次数分布(柱形)、拟混合分布(实线)与成分(虚线)分布"

图2

A?B?C?D分别表示小麦重组自交系群体在2015-2016年陕西杨凌(E1: 2016SY)?2016-2017年陕西杨凌(E2: 2017SY)?2016-2017河南原阳(E3: 2017HY)?2016-2017四川广元(E4: 2017SG) 4个环境下重要产量性状的频率分布?相关性和拟合曲线 上三角形面板(对角线的右上方)显示了2个变量属性之间的相关系数以及显著性水平, 相关系数越大字号越大(星号越多表明越显著); 下三角形面板(对角线的左下方)为2个变量属性的散点图,显示的是具有拟合线的双变量散点图?对角线是各个变量的直方图, 每个显着性水平由一个符号表示, 对应关系依次为: 无符号 P < 0.1, “*” P < 0.05, “**”P < 0.01, “***”P < 0.001, “****”P < 0.0001?"

Table 2

Akaike information criterion(AIC) and Maximum likelihood values(MLV) of the genetic models from 'Pindong 34' and 'Barran'"

Table3

Fitness trsts of selected models in ‘Pindong 34’ and ‘Barran’"

Table 4

Estimates of 1st order genetic parameters of important yield traits for population from Pindong 34 $\times$ Barran"

Table 5

Estimates of 2nd order genetic parameters of important yeild traits for population from Pindong 34 $\times$ Barran"

[1] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry M A J. Prospects of doubling global wheat yields. Food Energy Secur, 2013,2:34-48.
[2] Maddala G S . The use of variance component models in pooling cross section and time series data. Econometrica, 1971,39:341-358.
[3] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 96-102.
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 96-102(in Chinese).
[4] 王建康, 盖钧镒 . 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997,24:432-4401.
Wang J K, Gai J Y . Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny. Acta Genet Sin, 1997,24:4432-4401 (in Chinese with English abstract).
[5] 章元明, 盖钧镒, 王永军 . 利用 P1、P2 和 DH 或 RIL 群体联合分离分析的拓展. 遗传, 2001,23:467-470.
Zhang Y M, Gai J Y, Wang Y J . An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas, 2001,23:467-470 (in Chinese with English abstract).
[6] Gai J Y, Wang J K . Identification and estimation of QTL model and effects. Theor Appl Genet, 1998,97:1162-1168.
[7] Zhang Y M, Gai J Y, Yang Y H . The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res Camb, 2003,81:157-1631.
[8] 李余生, 朱镇, 张亚东, 赵凌, 王才林 . 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008,34:1728-1733.
Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L . Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008,34:1728-1733 (in Chinese with English abstract).
[9] 江建华, 张启武, 洪德林 . 粳稻穗部性状遗传分析. 植物学报, 2010,45:182-188.
Jiang J H, Zhang Q W, Hong D L . Genetic analysis of panicle traits in Oryza sativa ssp. japonica. Chin Bull Bot, 2010,45:182-188 (in Chinese with English abstract).
[10] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu Li, Liu J . Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
[11] 周清元, 崔翠, 阴涛, 陈东亮, 张正圣, 李加纳 . 甘蓝型油菜角果长度的主基因+多基因混合遗传模型. 作物学报, 2014,40:1493-1500.
Zhou Q Y, Cui C, Yin T, Chen D L, Zhang Z S, Li J N . Genetic analysis of silique length using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2014,40:1493-1500 (in Chinese with English abstract).
[12] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣 . 油菜半矮杆新品系 10D130 株型性状的遗传分析. 作物学报, 2013,39:207-215.
Zhou Q Y, Li J Q, Cui C, Bu H D, Ying T, Yan Y H, Li J N, Zhang Z S . Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013,39:207-215 (in Chinese with English abstract).
[13] 丛野, 程勇, 邹崇顺, 张学昆, 王汉中 . 甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析. 作物学报, 2009,35:1462-1467.
Cong Y, Cheng Y, Zou C S, Zhang X K, Wang H Z . Genetic analysis of waterlogging tolerance for germinated seeds of rapeseed (Brassica napus L.) with mixed model of major gene plus polygene. Acta Agron Sin, 2009,35:1462-1467 (in Chinese with English abstract).
[14] 蔡长春, 陈宝元, 傅廷栋, 涂金星 . 甘蓝型油菜开花期和光周期敏感性的遗传分析. 作物学报, 2007,33:345-348.
Cai C C, Chen B Y, Fu T D, Tu J X . Genetic analysis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.). Acta Agron Sin, 2007,33:345-348 (in Chinese with English abstract).
[15] 李英双, 胡丹, 聂蛟, 黄科慧, 张玉珂, 张园莉, 佘恒志, 方小梅, 阮仁武, 易泽林 . 甜荞株高和茎粗的遗传分析. 作物学报, 2018,44:1185-1195.
Li Y S, Hu D, Nie J, Huang K H, Zhang Y K, Zhang Y L, She H Z, Fang X M, Ruan R W, Yi Z L . Genetic analysis of plant height and stem diameter in common buckwheat. Acta Agron Sin, 2018,44:1185-1195 (in Chinese with English abstract).
[16] 曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌 . 黄瓜节间长的主基因+多基因混合遗传模型分析. 农业生物技术学报, 2018,26:205-212.
Cao Q W, Zhang Y N, Wang Y Q, Yang G L, Sun X L, Li L B . Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus. J Agric Biotechnol, 2018,26:205-212 (in Chinese with English abstract).
[17] 张允楠, 曹齐卫, 李利斌, 王秀峰, 王永强, 孙小镭 . 黄瓜叶面积的主+多基因混合遗传模型分析. 园艺学报, 2015,42:897-906.
Zhang Y N, Cao Q W, Li L B, Wang X F, Wang Y Q, Sun X L . Genetic analysis of leaf size using mixed major-gene plus polygene inheritance model in Cucumis sativus. Acta Hort Sin, 2015,42:897-906 (in Chinese with English abstract).
[18] 徐小万, 曾莉, 李颖, 罗少波, 王恒明, 田永红 . 辣椒开花期的主基因+多基因遗传分析. 生物数学学报, 2012,27:755-775.
Xu X W, Zeng L, Li Y, Luo S B, Wang H M, Tian Y H . Major gene plus poly-gene inheritance analysis of the flowing time in pepper (Capsicum annuum L.). J Biomathem, 2012,27:755-775 (in Chinese with English abstract).
[19] Cao X W, Cui H M, Li J, Xiong A S, Hou X L, Li Y . Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis. Sci Hort, 2016,203:199-206.
[20] 李立会, 李秀全 . 小麦种质资源描述规程和数据标准. 北京: 中国农业出版社, 2006.
Li L H, Li X Q. Descriptors and Date Standard for Wheat. Beijing: China Agriculture Press, 2006 ( in Chinese)
[21] Choo T M, Reinbergs E . Estimation of the number of genes in doubled haploid populations of barley (Hordeum vulgare). Can J Genet Cytol, 1982,24:337-341.
[22] Gamble E E . Gene effects in corn (Zea may L.): I. Separation and relative importance of gene effects for yield. Plant Sci, 1962,42, 339-348.
[23] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平 . 小麦株高及其构成因素的遗传及相关性分析. 麦类作物学报, 2011,31:604-610.
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P . Genetic and correlation analysis of plant height and its components in wheat. J Triticeae Crops, 2011,31:604-610 (in Chinese with English abstract).
[24] 卢娟, 姚永定, 史华伟, 史雨刚, 王曙光, 孙黛珍 . 小麦产量构成因素相关性状与群体产量的遗传相关分析. 山西农业科学, 2018,46:501-503.
Lu J, Yao Y D, Shi H W, Shi Y G, Wang S G, Sun D Z . Genetic correlation analysis between yield components related traits and population yield in wheat. J Shanxi Agric Sci, 2018,46:501-503 (in Chinese with English abstract).
[25] 杨德龙, 张国宏, 李兴茂, 幸华, 程宏波, 倪胜利, 陈晓平 .小麦 RIL 群体株高和千粒重的抗旱遗传特性研究. 应用生态学报, 2012,23:1569-1576.
Yang D L, Zhang G H, Li X M, Xing H, Cheng H B, Ni S L, Chen X P . Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat. Chin J Appl Ecol, 2012,23:1569-1576 (in Chinese with English abstract).
[26] 王慧茹, 王光达, 昌小平, 杨德龙, 景蕊莲 . 不同水分环境条件下小麦IL群体产量相关性状遗传和关联性分析. 华北农学报, 2013,28(4):53-61.
Wang H R, Wang G D, Chang X P, Yang D L, Jing R L . Association and genetic analysis of yield related traits in introgression lines of wheat in different water environments. Acta Agric Boreali-Sin, 2013,28:53-61 (in Chinese with English abstract).
[27] Kato K, Miura H, Sawada S . Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor APPl Genet, 2000,101:1114-1121.
[28] Law C N, Snape J W, Worland A J . The genetic relationship between height and yield in wheat. Heredity, 1978,40:133-151.
[29] Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q . Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014,33:129-138.
[30] 王培, 李晓林, 杨林, 吴青霞, 杨子博, 白志元, 李立群, 李学军 . 小麦单株穗数的遗传分析及其QTL定位的最优基因型预测. 麦类作物学报, 2012,32:820-827.
Wang P, Li X L, Yang L, Wu Q X, Yang Z B, Bai Z Y, Li L Q, Li X J . Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information. J Triticeae Crops, 2012,32:820-827 (in Chinese with English abstract).
[31] 杜希朋, 闫媛媛, 刘伟华, 高爱农, 张锦鹏, 李秀全, 杨欣明, 车永和, 郭小敏 . 蚂蚱麦×碧玉麦杂交F2代部分农艺性状的遗传分析. 麦类作物学报, 2011,31:624-629.
Du,X P, Yan Y Y,Liu A H,Gao A N,Zhang J P,Li X Q,Yang X M,Che Y H,Guo X M. Genetic analysis on several important agronomic traits in F2 generation of Mazhamai × Biyumai. J Triticeae Crops, 2011,31:624-629 (in Chinese with English abstract).
[32] 朱欣果, 万洪深, 李俊, 郑建敏, 唐宗祥, 杨武云 . 人工合成小麦育种优势的主基因+多基因混合遗传分析, 南京农业大学学报, 2018,41, 625-632
Zhu X G, Wan H S, Li J, Zheng J M, Tang Z X, Yang W Y . Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat. J Nanjing Agric Univ, 2018,41, 625-632 (in Chinese with English abstract).
[33] Khan A S., Khan M R., Khan T M, . Genetic analysis of plant height, grain yield and other traits in wheat (Triticum aestivum L.). Internat J Agric Biol, 2000,2(1):1-4.
[34] Dere S, Yildirim M B . Inheritance of plant height, tiller number per plant, spike height and 1000-kernel weight in an 8×8 diallel cross population of bread wheat. Cereal Res Commun, 2006,34:965-972.
[35] 李斯深, 陈茂学, 王洪刚 . 利用重组自交系(RILs)群体进行质量-数量性状的遗传分析: 遗传模型和小麦产量性状遗传. 作物学报, 2001,27:896-904.
Li S S, Chen M X, Wang H G . Genetic analysis on qualitative-quantitative traits by using populations of recombinant inbred lines (RILs): genetic models and inheritance of yield traits in wheat. Acta Agron Sin, 2001,27:896-904 (in Chinese with English abstract).
[36] 李法计, 常鑫, 王宇娟, 宋全昊, 田芳慧, 孙道杰 . 小麦重组自交系群体9个重要农艺性状的遗传分析. 麦类作物学报, 2013,33:23-28.
Li F J, Chang X, Wang Y J, Song Q H, Tian F H, Sun D J . Genetics analysis of nine important agronomic traits in wheat population of recombinant inbred lines. J Triticeae Crops, 2013,33:23-28 (in Chinese with English abstract).
[37] 毕晓静, 史秀秀, 马守才, 韩芳, 亓佳佳, 李清峰, 王志军, 张改生, 牛娜 . 小麦农艺性状的主基因+多基因遗传分析. 麦类作物学报, 2013,33:630-634.
Bi X J, Shi X X, Ma S C, Han F, Qi J J, Li Q F, Wang Z J, Zhang G S, Niu N . Genetic analysis of agronomic traits related to yield based on major gene plus polygene model in wheat. J Triticeae Crops, 2013,33:630-634.
[38] 陈树林 . 苏麦3号矮杆密穗突变体NAUH164的遗传分析及突变座位的分子标记. 南京农业大学硕士学位论文,江苏南京, 2011.
Chen S L . Genetic Analysis and Mapping of the Mutant Locus of A Dwarf and Compact Spike Mutant NAUH164 from Wheat Variety Sumai 3. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011.
[39] 范平, 詹克慧, 孙建英, 王淑凤, 赵国山 . 小麦主要性状的遗传模型分析. 河南农业大学学报, 1999,33:231-234.
Fan P, Zhan K H, Sun J Y, Wang S F, Zhao G S . Analysis on the genetic models for main characters in wheat. Acta Agric Univ Henanensis, 1999,33(3):231-234 (in Chinese with English abstract).
[40] 蒲定福, 袁代斌, 蒙大庆, 李之凡, 胥岚 . 高产小麦主要性状的遗传模型分析. 西北农业学报, 2001,10(4):41-44.
Pu D F, Yuan D B, Meng D Q, Li Z F, Xu L . Genetic model analysis and parameter estimate on main characters of high-yield wheat. Acta Agric Boreali-Occident Sin, 2001,10(4):41-44 (in Chinese with English abstract).
[41] 卫云宗, 乔蕊清, 谢福来, 刘玲玲, 宁东贤 . 旱地冬小麦主要性状的配合力研究. 华北农学报, 1999,14(3):19-24.
Wei Y Z, Qiao R Q, Xie F L, Liu L L, Ning D X . A study on combining ability of major characters of winter wheat in dryland. Acta Agric Boreali-Sin, 1999,14(3):19-24 (in Chinese with English abstract).
[42] 张铁山, 韩金梅, 韩杰 . 春小麦穗颈遗传特性及其育种价值. 内蒙古农业科技, 2002, ( 2):18-19.
Zhang T S, Han J M, Han J . Genetic characteristics of spring wheat ear and its breeding value. Inner Mongolia Agric Sci Technol, 2002, ( 2):18-19 (in Chinese with English abstract).
[43] 张倩辉, 张晓科, 刘伟华, 李立会, 张锦鹏, 武军, 高爱农, 李秀全, 杨欣明 . 小麦有效分蘖数的遗传分析. 麦类作物学报, 2008,28:573-576.
Zhang Q H, Zhang X K, Liu H W, Li L H, Zhang J P, Wu J, Gao A N, Li X Q, Yang X M . The inheritance for effective tiller emergence in wheat. J Triticeae Crops, 2008,28:573-576 (in Chinese with English abstract).
[44] 闫林 . 大穗小麦西农9814主要性状遗传分析及性状改良研究. 西北农林科技大学博士论文, 陕西杨凌, 2009.
Yan L . Genetic Analysis of Main Traits and Research on Traits Improvement for Big Ears Wheat Xinong 9814. PhD Dissertation of Northwest A&F University, Yangling, Shanxi, China, 2009 (in Chinese with English abstract).
[45] 谢玥, 龙海, 侯永翠, 郑有良 . 小麦寡分蘖材料 H461 分蘖性状的遗传分析, 麦类作物学报, 2006,26(6):21-23.
Xie Y, Long H, Hou Y C, Zheng Y L . Inheritance analysis of correlative characters of aoligoculm wheat line H461. J Triticeae Crops, 2006,26(6):21-23 (in Chinese with English abstract).
[46] 马铮, 霍二伟, 卢兆成, 徐士库 . 杂交水稻主要性状对产量的影响. 山东农业科学, 2006, ( 3):21-23.
Ma Z, Huo E W, Lu Z C, Xu S K . Effect of main characters on yied of hybrid rice. Shandong Agric Sci, 2006, ( 3):21-23 (in Chinese).
[47] 王翠玲, 高海涛, 王书子, 段国辉, 吴少辉, 张学品, 吕树作 . 冬小麦品质与产量性状的遗传分析. 麦类作物学报, 2003,23(3):26-28.
Wang C L, Gao H T, Wang S Z, Duan G H, Wu S H, Zhang X P, Lyu S Z . Genetic analysis of quality and yied characters in winter wheat. J Triticeae Crops, 2003,23(3):26-28 (in Chinese with English abstract).
[48] 丁安明, 崔法, 李君, 赵春华, 王秀芹, 王洪刚 . 小麦单株产量与株高的QTL分析. 中国农业科学, 2011,44:2857-2867.
Ding A M, Cui F, Li J, Zhao C H, Wang X Q, Wang H G . QTL Analysis on grain yield per plant and plant height in wheat. Sci Agric Sin, 2011,44:2857-2867 (in Chinese with English abstract).
[49] Jamali K D, Ali S A . Yield and yield components with relation to plant height in semi-dwarf wheat. Pakistan J Bot, 2008,40:1805-1808.
[50] Kato K, Miura H, Sawada S . Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000,101:1114-1121.
[1] 李庆成, 黄磊, 李亚洲, 范超兰, 谢蝶, 赵来宾, 张舒洁, 陈雪姣, 甯顺腙, 袁中伟, 张连全, 刘登才, 郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(04): 513-519.
[2] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(04): 544-556.
[3] 张平平, 姚金保, 王化敦, 宋桂成, 姜朋, 张鹏, 马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(04): 491-502.
[4] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[5] 郝志明,耿妙苗,温树敏,闫桂军,王睿辉,刘桂茹. 小麦抗麦红吸浆虫基因标记的开发与验证[J]. 作物学报, 2020, 46(02): 179-193.
[6] 胡文静,张勇,陆成彬,王凤菊,刘金栋,蒋正宁,王金平,朱展望,徐小婷,郝元峰,何中虎,高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析[J]. 作物学报, 2020, 46(02): 157-165.
[7] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[8] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[9] 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318.
[10] 苏强,荣玮,张增艳. 小麦类受体蛋白激酶基因TaPK3A的克隆与抗纹枯病功能初步分析[J]. 作物学报, 2019, 45(8): 1158-1165.
[11] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[12] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[13] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[14] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[15] 金迪,王冬至,王焕雪,李润枝,陈树林,阳文龙,张爱民,刘冬成,詹克慧. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[8] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[9] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[10] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .