欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1016-1024.doi: 10.3724/SP.J.1006.2020.93054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析

任蒙蒙1,**,张红伟1,**,王建华2,王国英1,郑军1,*()   

  1. 1 中国农业科学院作物科学研究所, 北京100081
    2 中国农业大学农学院, 北京100193
  • 收稿日期:2019-10-12 接受日期:2020-04-15 出版日期:2020-07-12 发布日期:2020-04-26
  • 通讯作者: 郑军 E-mail:zhengjun02@caas.cn
  • 作者简介:任蒙蒙, E-mail: ren_mm1991@163.com|张红伟, E-mail: zhanghongwei@caas.cn
    ** 同等贡献
  • 基金资助:
    国家重点研发计划项目(2016YFD0101002);中国农业科学院创新工程专项

Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes

REN Meng-Meng1,**,ZHANG Hong-Wei1,**,WANG Jian-Hua2,WANG Guo-Ying1,ZHENG Jun1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2019-10-12 Accepted:2020-04-15 Online:2020-07-12 Published:2020-04-26
  • Contact: Jun ZHENG E-mail:zhengjun02@caas.cn
  • About author:** Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101002);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

摘要:

干旱是影响玉米(Zea mays L.)产量最主要的环境因素之一, 具有耐深播特性的玉米种质材料能够吸收土壤深层水分, 具有较强的耐旱性, 因此研究玉米耐深播性状的遗传机制具有重要的理论和应用价值。本实验室前期已利用耐深播玉米自交系3681-4与普通自交系X178构建的F2:3群体, 在玉米10号染色体上定位到了一个耐深播主效QTL qMES20-10。本研究在此基础上, 以X178为轮回亲本, 结合前景选择和背景选择, 构建了BC3F3:4家系, 对qMES20-10进行了确证; 并进一步利用分子标记辅助选择构建了高代回交群体, 将其精细定位于133.3~136.0 Mb的区间之内。同时, 利用从BC3F3:4家系中筛选出的两个近等基因系, 进行差异表达基因分析, 发现差异表达基因主要参与了化学性应激反应、氧化还原反应和对氧化胁迫的应激反应。本研究结果为进一步克隆耐深播主效QTL qMES20-10奠定了基础。

关键词: 玉米, 耐深播, QTL, 精细定位, 差异表达基因

Abstract:

Drought stress is a major threat to maize (Zea mays L.) yield. Deep-seeding tolerant maize variety can absorb water in deep soil and thus have strong drought tolerance. Therefore, it is of great theoretical and practical importance to study the genetic mechanism of deep-seeding tolerance. In our previous work, we identified a major QTL qMES20-10 controlling maize deep-seeding tolerance on chromosome 10 using an F2:3 population derived from a deep-seeding tolerant inbred line 3681-4 and a common inbred line X178. In this study, a BC3F3:4 population was constructed through background and foreground selection using X178 as the recurrent parent. The major QTL, qMES20-10, was firstly verified in this BC3F3:4 population. Furthermore, advanced backcross population was constructed through marker-assisted selection, and qMES20-10 was fine-mapped within the interval of 133.3-136.0 Mb on chromosome 10. Moreover, RNA-Seq analysis of two near-isogenic lines screened from the BC3F3:4 families identified the differentially expressed genes, mainly involved in chemical stimulus response, oxidation reduction, and oxidative stress response. These results lay a foundation of further cloning the major QTL qMES20-10.

Key words: maize, deep-seeding tolerance, QTL, fine mapping, differentially expressed genes

图1

表型鉴定方法和亲本材料表型 A: 表型鉴定方法示意图。B: 20 cm播深条件下亲本材料的中胚轴, 标尺=1 cm。C: 亲本材料的中胚轴长度; **表示0.01水平下差异显著。"

表1

本研究所用的引物"

引物
Primer
物理位置
Position
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
umc1506 133,239,898 ATAAAGGTTGGCAAAACGTAGCCT AAAAGAAACATGTTCAGTCGAGCG
DST_InD25 133,799,178 TGCGCTTTATTAGGCGAAAC TTTACGCGTTATGGGAGACC
DST_Ind7 134,830,243 GCTTGCTGCATTGTCTTGAA GGCAGATTGACACTGGTGAA
DST_Ind105 136,072,789 AGAGAGACAGCCGCACTTG TCGACCGTACTTGTTCATGG
DST_InD13 136,274,298 GGCAACAGTTCGACGGATTA TCCGGATGATGTTTACATGG
bnlg1028 138,503,281 AGGAAACGAACACAGCAGCT TGCATAGACAAAACCGACGT

图2

耐深播主效QTL qMES20-10确证 A: BC3F3:4家系中3种基因型材料的中胚轴长度。A、H、B分别表示X178纯合、杂合、3681-4纯合3种基因型。P值是对3种基因型材料的中胚轴长度作方差分析得到。B: BC3F3:4家系全基因组QTL检测。"

图3

耐深播主效位点qMES20-10的精细定位 A: 目标QTL qMES20-10所在的染色体区段。B: 用BC4F2:3家系进行精细定位。R1~R9表示9种不同的重组类型, 黑色和白色区段分别代表来自亲本3681-4和X178的染色体片段。** 和 * 分别表示在0.01和0.05水平下差异显著, NS表示无显著差异。"

图4

后代测验验证定位区间 A: 交换单株的交换位置。B: 对交换单株的后代进行基因型和表型分析。图中黑色、白色和灰色区段分别代表来自3681-4、X178和杂合的染色体片段。n代表不同基因型单株的个数, P值是不同基因型单株的中胚轴长度做t测验得到。"

图5

差异基因统计和分布图 A: 两组差异表达基因的韦恩图。B: 两组差异表达基因在染色体上的分布图, 大圆和小圆分别表示两亲本和近等基因系中的差异表达基因。P-value通过对两组基因的表达量做t测验获得, 红色的点表示P-value小于0.0001的基因。"

图6

近等基因系中差异基因GO分析 A: 灰色方框表示能富集到的通路。B: KEGG网站中植物激素信号转导途径富集到的差异表达基因。"

[1] Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M, Hammer G L. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 2014,344:516-519.
doi: 10.1126/science.1251423 pmid: 24786079
[2] Molatudi R L, Mariga I K. The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009,5:2234-2237.
[3] Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptile improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil, 2005,272:87-100.
doi: 10.1007/s11104-004-4040-8
[4] Zhou L, Wang J K, Yi Q, Wang Y Z, Zhu Y G, Zhang Z H. Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res, 2007,100:294-301.
doi: 10.1016/j.fcr.2006.08.003
[5] Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum L.) is associated with longer coleoptile, greater seedling vigor and final plant height. Theor Appl Genet, 2007,115:59-66.
doi: 10.1007/s00122-007-0540-2
[6] Zhang Z H, Yu S B, Yu T, Huang Z, Zhu Y G. Mapping quantitative trait loci (QTLs) for seedling-vicror using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Res, 2005,91:161-170.
doi: 10.1016/j.fcr.2004.06.004
[7] Alibu S, Saito Y, Shiwachi H, Irie K. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (Oryza sativa L.) and seedling emergence in deep sowing. Afr J Agric Res, 2012,7:6239-6248.
doi: 10.5897/AJAR
[8] van Ast A, van Delft G J, Graves J D, Fitter A H. Striga seed avoidance by deep planting and no-tillage in sorghum and maize. Int J Pest Manage, 2000,46:251-256.
doi: 10.1080/09670870050206019
[9] Troyer A F. The location of genes governing long first internode of corn. Genetics, 1997,145:1149-1154.
pmid: 9093865
[10] Dungan G H. Response of corn to extremely deep planting. Agron J, 1950,42:256-257.
doi: 10.2134/agronj1950.00021962004200050010x
[11] Flint L H. Light and the elongation of the mesocotyl in corn. Plant Physiol, 1944,19:537-543.
doi: 10.1104/pp.19.3.537 pmid: 16653935
[12] Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptile length improves stand establishment, vigor and grain yield of deep-sown wheat. Field Crops Res, 2007,100:10-23.
doi: 10.1016/j.fcr.2006.05.001
[13] Lu Q, Zhang M C, Niu X J, Wang C H, Xu Q, Feng Y, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping. Planta, 2016,243:645-657.
doi: 10.1007/s00425-015-2434-x pmid: 26612069
[14] Wu J L, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol, 2016,15:218.
doi: 10.1186/s12870-015-0608-0 pmid: 26362270
[15] Zhao Y, Zhao W P, Jiang C H, Wang X L, Xiong H Y, Elana G T, Yin Z G, Chen Y F, Wang X, Xie J Y, Pan Y H, Rashid M R, Zhang H L Li J X, Li Z C. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Front Plant Sci, 2018,9:332.
doi: 10.3389/fpls.2018.00332 pmid: 29616055
[16] 赵光武, 马攀, 王建华, 王国英. 不同玉米自交系耐深播能力鉴定及对深播胁迫的生理响应. 玉米科学, 2009,17(5):9-13.
Zhao G W, Ma P, Wang J H, Wang G Y. Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. J Maize Sci, 2009,17(5):9-13 (in Chinese with English abstract).
[17] Liu H J, Zhang L, Wang J C, Li C S, Zeng X, Xie S P, Zhang Y Z, Liu S S, Hu S L, Wang J H, Lee M, Lübberstedt T, Zhao G W. Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front Plant Sci, 2017,8:813.
doi: 10.3389/fpls.2017.00813 pmid: 28588594
[18] Henry A, Swamy B P, Dixit S, Torres R D, Batoto T C, Manalili M, Anantha M S, Mandal N P, Kumar A. Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. J Exp Bot, 2015,66:1787-1799.
doi: 10.1093/jxb/eru506 pmid: 25680791
[19] 饶志明, 董海涛, 庄杰云, 柴荣耀, 樊叶杨, 李德葆, 郑康乐. 水稻抗稻瘟病近等基因系的cDNA微阵列分析. 遗传学报, 2002,29:887-893.
Rao Z M, Dong H T, Zhuang Z J, Chai R Y, Fan Y Y, Li D B, Zheng K L. Analysis of gene expression profiles during host-Magnaporthe grisea interactions in a pair of near isogenetic lines of rice. Acta Genet Sin, 2002,29:887-893 (in Chinese with English abstract).
[20] Zhao G, Fu J, Wang G, Ma P, Wu L, Wang J H. Gibberellin- induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Plant Breed, 2010,129:87-91.
doi: 10.1111/pbr.2010.129.issue-1
[21] Zhang H W, Ma P, Zhao Z N, Zhao G W, Tian B H, Wang J H, Wang G Y. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet, 2012,124:223-232.
doi: 10.1007/s00122-011-1700-y
[22] Prigge V, Xu X W, Li L, Babu R, Chen S J, Atlin G N, Melchinger A E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012,190:781-793.
doi: 10.1534/genetics.111.133066
[23] Chen D H, Ronald P C. A rapid DNA min preparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999,17:53-57.
doi: 10.1023/A:1007585532036
[24] Settles A M, Bagadion A M, Bai F, Zhang J, Barron B, Leach K, Mudunkothge J S, Hoffner C, Bihmidine S, Finefield E, Hibbard J, Dieter E, Malidelis I A, Gustin J L, Karoblyte V, Tseung C W, Braun D M. Efficient molecular marker design using the MaizeGDB Mo17 SNPs and Indels track. G3: Genes Genom Genet, 2014,4:1143-1145.
doi: 10.1534/g3.114.010454 pmid: 24747759
[25] Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260.
doi: 10.1007/s00122-007-0663-5
[26] Revele W. Procedures for Personality and Psychological Research. Evanston, IL, USA: Northwestern University, 2015.
[27] Rio D C, Ares M, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc, 2010,6:0-0.
[28] Yang Q, Zhang D F, Xu M L. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol, 2012,54:228-237.
doi: 10.1111/j.1744-7909.2012.01108.x
[29] Von Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006,112:1221-1231.
doi: 10.1007/s00122-006-0223-4
[30] Ghosh S, Chan C K. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol, 2016,1374:339-361.
doi: 10.1007/978-1-4939-3167-5_18 pmid: 26519415
[31] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[32] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010,11:R106.
doi: 10.1186/gb-2010-11-10-r106 pmid: 20979621
[33] Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2017,45:W122-W129.
doi: 10.1093/nar/gkx382 pmid: 28472432
[34] Habib A, Powell J J, Stiller J, Liu M, Shabala S, Zhou M X, Gardiner D M, Liu C J. A multiple near isogenic line (multi-NIL) RNA-Seq approach to identify candidate genes underpinning QTL. Theor Appl Genet, 2018,131:613-624.
doi: 10.1007/s00122-017-3023-0 pmid: 29170790
[35] Glagoleva A Y, Shmakov N A, Shoeva O Y, Vasiliev G V, Shatskaya N V, Börner A, Afonnikov D A, Khlestkina E K. Metabolic pathways and genes identified by RNA-Seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biol, 2017,17:182.
doi: 10.1186/s12870-017-1124-1 pmid: 29143606
[36] Smets R, Le J, Prinsen E, Verbelen J P, Van Onckelen H A. Cytokinin-induced hypocotyl elongation in light-grownArabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta, 2005,221:39-47.
doi: 10.1007/s00425-004-1421-4 pmid: 15843964
[37] Hayashi Y, Takahashi K, Inoue S, Kinoshita T. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiol, 2014,55:845-853.
doi: 10.1093/pcp/pcu028 pmid: 24492258
[38] Luo Q, Lian H L, He S B, Li L, Jia K P, Yang H Q. COP1 and PhyB physically interact with PIF1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell, 2014,26:2441-2456.
doi: 10.1105/tpc.113.121657 pmid: 24951480
[1] 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定[J]. 作物学报, 2020, 46(8): 1135-1145.
[2] 张凌霄, 焦珍珍, 卜华虎, 王逸茹, 李健, 郑军. 玉米阳离子/质子逆向转运蛋白ZmNHX7的功能鉴定[J]. 作物学报, 2020, 46(8): 1185-1194.
[3] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[4] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[5] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建[J]. 作物学报, 2020, 46(7): 1006-1015.
[6] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[7] 牛欣宁,王步军. 玉米粉中伏马毒素FB1基体标准物质的评价[J]. 作物学报, 2020, 46(7): 1128-1133.
[8] 王瑞莉,王刘艳,叶桑,郜欢欢,雷维,吴家怡,袁芳,孟丽姣,唐章林,李加纳,周清元,崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位[J]. 作物学报, 2020, 46(6): 832-843.
[9] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[10] 彭勃,赵晓雷,王奕,袁文娅,李春辉,李永祥,张登峰,石云素,宋燕春,王天宇,黎裕. 玉米叶向值的全基因组关联分析[J]. 作物学报, 2020, 46(6): 819-831.
[11] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[12] 秦利萍,董二飞,白洋,周练,任岚扬,张任凤,刘朝显,蔡一林. 玉米tasselseed突变体ts12的遗传分析与分子鉴定[J]. 作物学报, 2020, 46(5): 690-699.
[13] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[14] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[15] 李俊,李亮,李夏莹,宋贵文,沈平,张丽,翟杉杉,柳方方,吴刚,张秀杰,武玉花. 转基因玉米MIR604基体标准物质研制[J]. 作物学报, 2020, 46(4): 473-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[10] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .