欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 179-189.doi: 10.3724/SP.J.1006.2017.00179

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜盐胁迫下幼苗鲜重和干重QTL定位及候选基因分析

侯林涛**,王腾岳**,荐红举,王嘉,李加纳,刘列钊*   

  1. 西南大学农学与生物科技学院,重庆 400715
  • 收稿日期:2016-04-20 修回日期:2016-09-18 出版日期:2017-02-12 网络出版日期:2016-09-27
  • 通讯作者: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-6825070
  • 基金资助:

    本研究由国家自然科学基金项目(31371655)资助。

QTL Mapping for Seedling Dry Weight and Fresh Weight under Salt Stress and Candidate Genes Analysis in Brassica napus L.

HOU Lin-Tao**,WANG Teng-Yue**,JIAN Hong-Ju,WANG Jia,LI Jia-Na,LIU Lie-Zhao*   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2016-04-20 Revised:2016-09-18 Published:2017-02-12 Published online:2016-09-27
  • Contact: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-6825070
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31371655).

摘要:

盐胁迫是非生物胁迫中影响作物产量的一个主要因素,利用分子标记方法选育油菜耐盐品种对提高油菜产量具有重要意义。选用来自GH06与P174杂交后通过单粒传法连续自交获得的高世代重组自交系群体,以含16 g L–1 NaCl的Hoagland溶液培养幼苗进行盐胁迫处理25 d后,分别测定叶和根的鲜重及干重,根据已构建的高密度SNP遗传连锁图谱进行QTL定位,在QTL物理区间筛选耐盐相关基因并以极端表型材料进行qRT-PCR分析。采用复合区间作图法(CIM),在对照和盐胁迫处理中共检测到19个QTL,其中与盐胁迫相关的有6个,可解释的表型变异7.16%~16.15%,分布在A02、A04和C03染色体上,将QTL置信区间序列和拟南芥中与盐胁迫相关的基因比对分析,共找到8个候选基因。对其中4个候选基因在极端表型材料中的表达分析表明,BnaA02g14680DBnaA02g14490D基因在盐胁迫处理后的48 h或72 h表达量均高于对照组,即基因的表达由盐胁迫引起,而BnaC03g64030D在敏感型材料中的相对表达量高于在耐盐型材料中,BnaC03g62830D在敏感型材料中没有明显变化,但在耐盐型材料中呈现先升高后降低的表达特征,其表达可能会增强植株对盐胁迫的耐受力。本研究为油菜耐盐基因功能挖掘和油菜耐盐品种选育奠定基础。

关键词: 甘蓝型油菜, 盐胁迫, 数量性状位点, 单核苷酸多态性, 候选基因

Abstract:

Salt stress is one of the main abiotic stresses affecting crop yield and it would be very important by using the salt tolerance related markers in rapeseed breeding to improve the oilseed production. In this research, the Brassica napus L high generation recombinant inbred lines (RIL) population derived from the cross of GH06 and P174 via single seed descent propagation was used for QTL mapping and candidate gene analysis. The fresh and dry weight of leaf and root were measured at 25 days after the seedlings were grown in Hoagland solution with 16 g L–1 NaCl. Composite interval mapping (CIM) was used to identify the related QTLs according to the high density SNP genetic map, and the candidate gene expression in the extreme lines tested by qRT-PCR. A total of 19 QTLs were identified in the control and salt stress treatment, and six QTLs were mapped on chromosomes A02, A04 and C03 under salt stress, with contribution rate ranged from 7.16% to 16.15%. Eight genes were identified according to the BLAST of genes in the QTL confidence intervals and the salt stress related genes in Arabidopsis. The expression of four candidate genes in the extreme lines showed that BnaA02g14680D and BnaA02g14490D under salt stress treatment for 48 or 72 hours had higher expression than the control, which indicates that the expressions are induced by salt stress. The relative expressions of gene BnaC03g64030D in sensitive extreme lines were higher than those in tolerant extreme lines. There were no changed in expression for gene BnaC03g62830D in sensitive extreme lines but increased expression at 48 hours and reduced expression at 72 hours after salt treatment in tolerant extreme lines, showing the enhance of plant salt tolerance possibly. Our research laid a foundation for the function research of salt tolerant gene in rapeseed and the breeding of salt tolerant rapeseed.

Key words: Brassica napus L, Salt stress, QTL, SNP, Candidate gene

[1]杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125–130
    Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125–130 (in Chinese with English abstract)
[2]Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review. Land Degrad Devel, 2000, 11: 501–521
[3]沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8
    Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1–8 (in Chinese with English abstract)
[4]陈宗金, 蔡士宾, 杨继书, 张巧凤, 吴纪中, 蒋彦婕, 颜伟, 吴小有. 主要农作物芽期耐盐性比较研究. 农业科学, 2012, 2(4): 59–65
    Chen Z J, Cai S B, Yang J S, Zhang Q F, Wu J Z, Jiang Y J, Yan W, Wu X Y. Comparison of salinity tolerance among main crops at germination stage. Hans J Agric Sci, 2012, 2(4): 59–65 (in Chinese with English abstract)
[5]王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673–684
    Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on Saline-alkali land sustainable utilization research. Acta Geograph Sin, 2011, 66: 673–684 (in Chinese with English abstract)
[6]易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676–682
    Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676–682 (in Chinese with English abstract)
[7]Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285–296
[8]孙美玉. 甘蓝型油菜含油量QTLs定位及候选基因筛选. 中国农业科学院博士论文, 湖北武汉, 2012. pp 51–54
    Sun M Y. Mapping of QTLs and Screening of Candidate Genes for Oil Content in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Wuhan, China, 2012. pp 51–54 (in Chinese with English abstract)
[9]Yang M, Ding G D, Shi L, Feng J, Xu F S, Meng J L. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet, 2010, 121: 181–193
[10]张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695–700
    Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695–700 (in Chinese with English abstract)
[11]Y?ld?z M, Akçal? N, Terzi H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J Plant Physiol, 2015, 179: 90–99
[12]刘国红, 姜超强, 刘兆普, 梁明祥, 殷祥贞, 郑青松. 盐胁迫对油菜幼苗生长和光合特征的影响. 生态与农村环境学报, 2012, 28(2): 157–164
    Liu G H, Jiang C Q, Liu Z P, Liang M X, Yin X Z, Zheng Q S. Effects of salt stress on growth and photosynthetic traits of Canola seedlings. J Ecol Rural Environ, 2012, 28(2): 157–164 (in Chinese with English abstract)
[13]郑青松, 刘海燕, 隆小华, 刘兆普, 牛丹丹, 高影影. 盐胁迫对油菜幼苗离子吸收和分配的影响. 中国油料作物学报, 2010, 32: 65–70
    Zheng Q S, Liu H Y, Long X H, Liu Z P, Niu D D, Gao Y Y. Effects of salt stress on ionic absorption and distribution of rapeseed seedlings. Chin J Oil Crop Sci, 2010, 32: 65–70 (in Chinese with English abstract)
[14]Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197(3): 341–353
[15]荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014, 40: 629–635
    Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z. QTL mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin, 2014, 40: 629–635 (in Chinese with English abstract)
[16]Moursi Y S S. Genetic Mapping of QTL Controlling Salt Tolerance and Glucosinolates in Brassica napus and Brassica oleracea. PhD Dissertation of Georg-August-University, Germany, Göttingen, 2014. pp 73–78
[17]Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. High-Density SNP Map for Accurate Mapping of Seed Fibre QTL in Brassica napus L. PloS One, 2013, 8: e83052. DOI:10.1371/journal.pone.0083052
[18]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Ver.2.5 [computer program] Department of Statistics, North Carolina State University, Raleigh, NC, 2006. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[19]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199
[20]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13
[21]Chalhoub B, Denoeud F, Liu S Y, Isobe I A, Tang H B, Wang X Y,Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Silva C D, Just J, Falentin C, Koh S H, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier M L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H. D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Christopher D, Town, Ian B, Wang X W, Meng J L, Ma J X, Pires J C, Graham J, King, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953
[22]Feng J L, Li J J, Gao Z X, Lu Y R, Yu J Y, Zheng Q, Yan S N, Zhang W J, He H, Ma L G, Zhu Z G. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant, 2015, 87: 1038–1052
[23]Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997, 113: 1203–1212
[24]Woei-Jiun G, Tuan-Hua D H. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol, 2008, 148: 1182–1182
[25]Elfving N, Davoinea C, Benllochb R, Blomberga J, Brännströma K, Müllerc D, Nilssond A, Ulfstedtd M, Ronned H, Wingsleb G, Nilssonb O, Björklunda S. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. PNAS, 2011, 108: 8245–8250
[26]Ortega-Amaro MA, Rodriguez-Hernandez AA, Rodriguez-Kessler M, Hernandez-Lucero E, Rosales Mendoza S, Ibañez-Salazar A, Delgado P, Jimenez Bremont JF. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front Plant Sci, 2015, 5: 782–783
[27]Seifert G J, Xue H, Acet T. The Arabidopsis thaliana Fasciclin like arabinogalactan protein 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot, 2014, 114: 1125–1133
[28]Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer A H, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta, 2011, 234: 123–137
[29]Glass M, Barkwill S, Unda F, Mansfield S D. Endo-β-1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. J Integ Plant Biol, 2015, 57: 396–410
[30]Munns R, Tester M. Mechanisms of salinity tolerance. Ann Rev Plant Biol, 2008, 59: 651–681
[31]Ashraf M, McNeilly T. Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci, 2004, 23: 157–174
[32]Tunçtürk M, Tunçtürk R, Yildirim B, Çiftçi V. Changes of micronutrients, dry weight and plant development in canola (Brassica napus L.) cultivars under salt stress. Afric J Biotechnol, 2011, 10: 3726–3730
[33]Yeo A R. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998, 49: 915–929
[34]Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: Where next? Aust J Plant Physiol, 1995, 22: 875–884
[35]Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem, 2010, 285: 9190–9201
[36]Shi C C, Feng C C, Yang M M, Li J L, Li X X, Zhao B C, Huang Z J, Ge R C. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. Plant Sci, 2014, 217: 63–70
[37]Long W H, Zou X L, Zhang X K. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PloS One, 2015, 10(2): e0116217.

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[12] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!