作物学报 ›› 2018, Vol. 44 ›› Issue (02): 208-217.doi: 10.3724/SP.J.1006.2018.00208
张伟1,2,**, 尹米琦1,**, 赵佩1, 王轲1, 杜丽璞1, 叶兴国1,*
Wei ZHANG**, Mi-Qi YIN**, Pei ZHAO, Ke WANG, Li-Pu DU, Xing-Guo YE*
摘要:
小麦细胞工程育种和基因工程育种存在强烈的基因型特异性, 从目前推广的优良小麦品种中筛选不同外植体再生能力强的基因型, 对于提高小麦生物技术育种效率和加速育成品种的生产应用具有重要意义。本研究以全国大面积推广的24个优良小麦品种和抗白粉病优良品系CB037为材料, 连续2年进行花药培养、幼胚培养和成熟胚培养, 统计愈伤组织诱导率、愈伤组织分化率和植株再生率, 分析、评价这些小麦品种(系) 3种外植体的组织培养再生性能。结果表明, 25个小麦品种(系)花药、幼胚、成熟胚的植株再生率分别为0~41.75%、2.25%~531.92%和3.24%~84.34%, 基因型差异显著; 组织培养再生能力以幼胚最强(119.79%), 成熟胚其次(36.23%), 花药最弱(4.91%)。CB037的3种外植体组织培养再生效率均最高, 轮选987、扬麦16、内麦836、科农199、新春6号、郑麦366、郑麦9023、新冬20、烟农19和川麦42幼胚培养植株再生能力表现较强, 新春6号、京冬8号、石麦4185、科农199和轮选987成熟胚培养植株再生率较高, 石麦4185和邯6172花药培养绿苗诱导率较高。小麦组织培养效率与基因型和外植体类型密切相关, 不同品种同一外植体再生能力差异显著, 同一品种不同外植体再生能力也存在显著差异, 并且3种外植体的组织培养再生能力不存在相关性。本研究筛选到不同外植体再生能力较好的优良小麦基因型, 可进一步用于小麦转基因育种和单倍体育种。
[1] | 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47: 4155-4171 |
Ye X G. Xu H J, Du L P, He G Y, Wang K, Lin Z S.Establishment and application of large-scale transformation systems in wheat.Sci Agric Sin, 2014, 47: 4155-4171 (in Chinese with English abstract) | |
[2] | 韩晓峰, 陶丽莉, 殷桂香, 刘晓蕾, 杜丽璞, 魏亦勤, 晏月明, 叶兴国. 基因型和环境条件对小麦花药培养效果的影响. 作物学报, 2010, 36: 1209-1215 |
Han X F, Tao L L, Yin G X, Liu X L, Du L P, Wei Y Q, Yan Y M, Ye X G.Effect of genotype and growing environment on anther culture in wheat.Acta Agron Sin, 2010, 36: 1209-1215 (in Chinese with English abstract) | |
[3] | She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G.Efficient Regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos inTriticum aestivum L. Mol Biotechnol, 2013, 54: 451-460 |
[4] | Mathias R J, Fukui K, Law C.Cytoplasmic effects on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet, 1986, 72: 70-75 |
[5] | He D, Yang Y, Scott K.A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium.Plant Sci, 1988, 57: 225-233 |
[6] | Stober A, Hessu D.Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed, 1997, 116: 443-447 |
[7] | Mendoza M G, Kaeppler H F.Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev-Pl, 2002, 38: 39-45 |
[8] | Varshney A, Altpeter F.Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed, 2002, 8: 295-309 |
[9] | Turhan H, Baser I.Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci, 2004, 3: 17-19 |
[10] | Sharma V, Hänsch R, Mendel R, Schulze J.Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long‐term retention of morphogenecity using meristematic shoot segments. Plant Breed, 2005, 124: 242-246 |
[11] | 叶兴国, 徐惠君, 徐琼芳, 杜丽璞, 李志武. 小麦花药培养力的基因型差异和配合力分析. 中国农业科学, 1997, 30(6): 49-54 |
Ye X G, Xu H J, Xu Q F, Du L P, Li Z W.Genetic analysis and combining ability evaluation of the anther culture response in common wheat.Sci Agric Sin, 1997, 30(6): 49-54 (in Chinese with English abstract) | |
[12] | Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T.Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures.Plant Cell, Tiss Org, 1998, 53: 67-74 |
[13] | Shah M, Khalid Q, Khan U, Shah S, Shah S, Hassan A, Pervez A, Oliveira V, Caxito F, Gomes K.Variation in genotypic responses and biochemical analysis of callus induction in cultivated wheat. Genet Mol Res, 2009, 8: 783-793 |
[14] | Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye X G.Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China, 2011, 10: 9-17 |
[15] | Zamani I, Gouli Vavdinoudi E, Kovacs G, Xynias I, Roupakias D, Barnabas B.Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids.Plant Breed, 2003, 122: 314-317 |
[16] | Ozias A P, Vasil I K.Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat): evidence for somatic embryogenesis. Protoplasma, 1982, 110: 95-105 |
[17] | Bi R M, Kou M, Chen L G, Mao S R, Wang H G.Plant regeneration through callus initiation from mature embryo ofTriticum. Plant Breed, 2007, 126: 9-12 |
[18] | Arzani A, Mirodjagh S S.Response of durum wheat cultivars to immature embryo culture, callus induction andin vitro salt stress. Plant Cell, Tiss Org, 1999, 58: 67-72 |
[19] | Szakács E, Kovács G, Pauk J, Barnabás B.Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.). Plant Cell Rep, 1988, 7: 127-129 |
[20] | Liu W G, Zheng M Y, Enrique A P, Calvin F K.Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci, 2002, 42: 686-692 |
[21] | Tuvesson I K D, Pedersen S, Andersen S B. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet, 1989, 78: 879-883 |
[22] | Buyser D J, Hachemi-Rachedi S, Lemee M L, Sejourne S, Marcotte J J, Henry Y.Aneuploid analysis of anther culture response in wheat.Plant Breed, 1992, 109: 339-342 |
[23] | Jia H Y, Yu J, Yi D L, Cheng Y, Xu W Q, Zhang L X, Ma Z Q.Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell, Tiss Org, 2009, 97: 159-165 |
[24] | Jia H Y, Yi D L, Yu J, Xue S L, Xiang Y, Zhang C Q, Zhang Z Z, Zhang L, Ma Z Q.Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells, 2007, 23: 323-330 |
[25] | Pellegrineschi A, Noguera L M, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M L, Hoisington D A.Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants.Genome, 2002, 45: 421-430 |
[26] | Khanna H, Daggard G.Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21: 429-436 |
[27] | Greer M S, Kovalchuk I, Eudes F.Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation ofTriticum aestivum. New Biotechnol, 2009, 26: 44-52 |
[28] | Ishida Y, Tsunashima M, Hiei Y, Komari T.Wheat (Triticum aestivum L.) transformation using immature embryos. In: Agrobacterium Protocols: Volume 1. Methods in Molecular Biology vol. 1223, (Wang K ed) New York: Springer Science+ Business Media, 2015. pp 189-198 |
[29] | Zhou H, Berg J D, Blank S E, Chay C A, Chen G, Eskelsen S R, Fry J E, Hoi S, Hu T, Isakson P J, Lawton M B, Metz S G, Rempel C B, Ryerson D K, Sansone A P, Shook A L, Starke R J, Tichota J M, Valenti S A.Field efficacy assessment of transgenic roundup ready wheat.Crop Sci, 2003, 43: 1072-1075 |
[30] | Stokstad E.Biotechnology-Monsanto pulls the plug on genetically modified wheat.Science, 2004, 304: 1088-1089 |
[31] | 叶兴国, 徐惠君, 赵乐莲, 杜丽璞. 组织培养途径改良定型小麦品种的研究. 作物学报, 1998, 24: 310-314 |
Ye X G, Xu H J, Zhao L L, Du L P.Studies on improving wheat cultivars by tissue culture.Acta Agron Sin, 1998, 24: 310-314 (in Chinese with English abstract) | |
[32] | 叶兴国, 徐惠君, 杜丽璞, 辛志勇. 小麦遗传转化几个因素的研究. 中国农业科学, 2001, 34: 128-132 |
Ye X G, Xu H J, Du L P, Xin Z Y.Studies on the factors influencing the efficiency of wheat transformation.Sci Agric Sin, 2001, 34: 128-132 (in Chinese with English abstract) | |
[33] | Zhang W, Wang X M, Fan R, Yin G X, Wang K, Du L P, Xiao L L, Ye X G.Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos.J Integr Agric, 2015, 14: 11-19 |
[34] | 叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38: 191-201 |
Ye X G, She M Y, Wang K, Du L P, Xu H J.Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agron Sin, 2012, 38: 191-201 (in Chinese with English abstract) | |
[35] | Wang X M, Wang K, Li J R, Du L P, Li J R, Xu H J, Ye X G.Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). J Integr Agric, 2014, 13: 722-732 |
[36] | Chauhan H, Khurana P.Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J, 2011, 9: 408-417 |
[37] | Wang Y L, Xu M X, Yin G X, Tao L L, Wang D W, Ye X G.Transgenic wheat plants derived fromAgrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun, 2009, 37: 1-12 |
[38] | Li J R, Ye X G, An B Y, Du L P, Xu H J.Genetic transformation of wheat: current status and future prospects.Plant Biotechnol Rep, 2012, 6: 183-193 |
[39] | Tao L L, Yin G X, Du L P, Shi Z Y, She M Y, Xu H J, Ye X G.Improvement of plant regeneration from immature embryos of wheat infected byAgrobacterium tumefaciens. Agric Sci China, 2011, 10: 317-326 |
[40] | Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M.EfficientAgrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tiss Organ, 2014, 119: 647-659 |
[41] | Wang K, Liu H Y, Du L P, Ye X G.Generation of marker-free transgenic hexaploid wheat via anAgrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017, 15: 614-623 |
[42] | 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38: 1827-1832 |
Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S.Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins ofHaynaldia villosa. Acta Agron Sin, 2012, 38: 1827-1832 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|