欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 208-217.doi: 10.3724/SP.J.1006.2018.00208

• • 上一篇    下一篇

我国部分主推小麦品种组织培养再生能力评价

张伟1,2,**, 尹米琦1,**, 赵佩1, 王轲1, 杜丽璞1, 叶兴国1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京 100081
    2 广州甘蔗糖业研究所海南甘蔗育种场, 海南三亚 572025
  • 收稿日期:2017-03-26 接受日期:2017-09-10 出版日期:2018-02-12 网络出版日期:2017-09-28
  • 通讯作者: 张伟,尹米琦,叶兴国
  • 作者简介:

    第一作者联系方式: 张莉, E-mail: windylili@foxmail.com; 荐红举, E-mail: jianhongju1989@126.com; ** 同等贡献(Contributed equally to this work)

  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0102001)和国家转基因生物新品种培育重大专项(2016ZX08010004)资助

Regeneration Capacity Evaluation of Some Largely Popularized Wheat Varieties in China

Wei ZHANG**, Mi-Qi YIN**, Pei ZHAO, Ke WANG, Li-Pu DU, Xing-Guo YE*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Gene Resources and Genetic Improvement, Beijing 100081
    2 Hainan Sugarcane Breeding Station, Guangzhou Sugarcane Industry Research Institute, Sanya 572025, Hainan, China
  • Received:2017-03-26 Accepted:2017-09-10 Published:2018-02-12 Published online:2017-09-28
  • Contact: Wei ZHANG,Mi-Qi YIN,Xing-Guo YE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0102001) and the National Major Project for Developing New GM Crops (2016ZX08010004).

摘要:

小麦细胞工程育种和基因工程育种存在强烈的基因型特异性, 从目前推广的优良小麦品种中筛选不同外植体再生能力强的基因型, 对于提高小麦生物技术育种效率和加速育成品种的生产应用具有重要意义。本研究以全国大面积推广的24个优良小麦品种和抗白粉病优良品系CB037为材料, 连续2年进行花药培养、幼胚培养和成熟胚培养, 统计愈伤组织诱导率、愈伤组织分化率和植株再生率, 分析、评价这些小麦品种(系) 3种外植体的组织培养再生性能。结果表明, 25个小麦品种(系)花药、幼胚、成熟胚的植株再生率分别为0~41.75%、2.25%~531.92%和3.24%~84.34%, 基因型差异显著; 组织培养再生能力以幼胚最强(119.79%), 成熟胚其次(36.23%), 花药最弱(4.91%)。CB037的3种外植体组织培养再生效率均最高, 轮选987、扬麦16、内麦836、科农199、新春6号、郑麦366、郑麦9023、新冬20、烟农19和川麦42幼胚培养植株再生能力表现较强, 新春6号、京冬8号、石麦4185、科农199和轮选987成熟胚培养植株再生率较高, 石麦4185和邯6172花药培养绿苗诱导率较高。小麦组织培养效率与基因型和外植体类型密切相关, 不同品种同一外植体再生能力差异显著, 同一品种不同外植体再生能力也存在显著差异, 并且3种外植体的组织培养再生能力不存在相关性。本研究筛选到不同外植体再生能力较好的优良小麦基因型, 可进一步用于小麦转基因育种和单倍体育种。

关键词: 小麦, 花药, 幼胚, 成熟胚, 组织培养

Abstract:

Strong genotype dependence exists in wheat doubling haploid and genetic engineering breeding, in which high regeneration ability is a main restrain. In this study, we evaluated the regeneration abilities of various explants of 24 commercial popularized wheat varieties and a new breeding line (CB037) with high powdery mildew resistance. The explants used in the two-year experiment were anther, immature embryo, and mature embryo. The regeneration potential was assessed based on callus induction rate, callus differentiation rate, and shoot induction rate. The plantlet regeneration rates of the all genotypes tested were 0-41.75% for anther culture, 2.25%-531.92% for immature embryo culture, and 3.24%-84.34% for mature embryo culture, showing significant differences among genotypes. Generally, immature embryos had stronger regeneration ability (119.79%) than mature embryos (36.23%) and anthers (4.91%). Among all the used genotypes, CB037 showed the highest regeneration rates for the three explant types. Lunxuan 987, Yangmai 16, Neimai 836, Kenong 199, Xinchun 6, Zhengmai 366, Zhengmai 9023, Xindong 20, Yannong 19, and Chuanmai 42 exhibited ideal regeneration abilities in immature embryo culture; Xinchun 6, Jingdong 8, Shimai 4185, Kenong 199, and Luanxun 987 performed good in mature embryo culture; and Shimai 4185 and Han 6172 were characterized with high regeneration rate of green plantlet in anther culture. Plant regeneration efficiency of wheat was closely associated with genotype and explant type. The same explant type from different genotypes showed significantly different regeneration abilities, and different explants of the same genotype showed different regeneration abilities. However, there was no correlation among regeneration abilities of the three types of explants. The selected genotypes with high regeneration potential are recommended for application in genetic and cell engineering breeding of wheat.

Key words: wheat, anther, immature embryo, mature embryo, tissue culture

附表1

本研究用培养基配方"

培养基
Medium
组成成分
Component
W14 W14 + 2 mg L-1 2,4-D + 0.5 mg L-1 KT + 100 g L-1 蔗糖 Sucrose + 2.4 g L-1 植物凝胶 Phytagel, pH 5.8
SD2 MS (不含MS维生素) + 30 g L-1 蔗糖 Sucrose + 150 mg L-1 Asp + 10.0 mg L-1 Vb1 + 2.0 mg L-1 2,4-D + 2.4 g L-1植物凝胶Phytagel, pH 5.8
Adi

MS (不含MS维生素) + 0.75 g L-1 MgCl2 + 15 g L-1 甘露醇 Mannitol + 15 g L-1 山梨醇Sorbitol + 8 g L-1琼脂 Agar +5.0 mg L-1 谷氨酰胺 Glutamine + 0.5 g L-1 CH + 12.0 g L-1葡萄糖 Glucose + 10 mg L-1 Vb1 + 1.0 mg L-1 Vb6 + 1.0 mg L-1 烟酸 Nicotinic acid + 2.0 mg L-1 Gly + 39 mg L-1 AS + 2 mg L-1 Dicamba + 4 mg L-1 AgNO3 + 40 mg L-1 Cys + 100 mg L-1 Vc, pH 5.8
1/2MSNK 1/2MS +0.5 mg L-1 NAA+1 mg L-1 KT+20 g L-1蔗糖 Sucrose +2.4 g L-1植物凝胶 Phytagel, pH 5.8
IESDI2 MS + 30 g L-1蔗糖 Sucrose + 2.4 g L-1 植物凝胶 Phytagel + 2 mg L-1 Dicamba, pH 5.8
FHCK MS +20 g L-1蔗糖 Sucrose + 2.4 g L-1植物凝胶 Phytagel, pH 5.8

表1

不同小麦基因型幼胚培养愈伤组织诱导率、分化率和再生率比较"

图1

不同小麦基因型花药培养的愈伤组织诱导率、愈伤组织分化率、绿苗再生率和白化苗再生率"

图2

部分小麦基因型花药愈伤组织诱导和分化情况 A: 周麦18花药培养愈伤组织诱导情况; B: CB037愈伤组织分化情况; C: 周麦18愈伤分化情况; D: 石麦4185分化绿苗和白苗情况。"

图3

小麦品种CB037 (A)、扬麦16 (B)、郑麦9023 (C)和石麦4185 (D)幼胚培养植株再生情况"

图4

小麦品种CB037 (A)、轮选987 (B)、克丰10 (C)和克丰12 (D)的成熟胚培养植株再生情况"

表2

不同小麦基因型成熟胚培养愈伤组织分化率和再生率比较"

基因型
Genotype
成熟胚数
Mature embryos
分化愈伤组织数 Differentiated calli 再生绿苗数
Shoots regenerated
愈伤组织分化率
Differentiated calli rate (%)
绿苗诱导率
Shoot produced rate (%)
CB037 764 412 621 54.73 84.34
新春6号 Xinchun 6 730 426 500 58.48 68.78
京冬8号 Jingdong 8 722 402 441 55.83 61.95
石麦4185 Shimai 4185 368 188 215 51.31 59.00
科农199 Kenong 199 346 198 181 57.16 52.34
轮选 987 Lunxuan 987 368 150 190 41.05 52.19
周麦18 Zhoumai 18 584 256 254 44.17 44.36
新冬20 Xindong 20 362 136 154 37.56 42.56
扬麦16 Yangmai 16 356 138 149 39.04 42.25
郑麦366 Zhengmai 366 360 148 150 41.11 41.65
鄂麦18 Emai 18 328 138 126 43.38 40.28
周麦22 Zhoumai 22 364 146 132 40.02 36.17
中麦895 Zhongmai 895 320 108 111 34.86 35.85
川麦42 Chuanmai 42 352 112 116 31.73 32.97
济麦22 Jimai 22 366 124 117 33.73 31.82
烟农19 Yannong 19 368 154 115 42.05 31.27
宁春4号 Ningchun 4 378 106 98 28.52 26.44
西农979 Xinong 979 464 130 114 27.63 23.91
矮抗58 Aikang 58 346 90 73 25.50 20.59
邯6172 Han 6172 468 90 103 16.86 19.79
龙麦30 Longmai 30 334 80 58 23.98 17.80
郑麦9023 Zhengmai 9023 484 90 71 18.62 14.73
内麦836 Neimai 836 216 18 28 7.66 14.30
克丰12 Kefeng 12 322 20 27 6.32 7.24
克丰10号 Kefeng 10 408 20 13 5.03 3.24
LSD0.01 15.25 28.47

表3

小麦不同外植体组织培养特性间的相关系数"

外植体类型
Explant type
愈伤组织诱导 Callus induction 愈伤组织分化 Callus differentiation 植株再生 Plant regeneration
幼胚
Immature embryo
成熟胚
Mature embryo
幼胚
Immature embryo
成熟胚
Mature embryo
幼胚
Immature embryo
成熟胚
Mature embryo
成熟胚 Mature embryo 0.18 1.00 0.30 1.00 0.51 1.00
花药 Anther -0.13 -0.14 0.42 0.33 0.32 0.53
[1] 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47: 4155-4171
Ye X G. Xu H J, Du L P, He G Y, Wang K, Lin Z S.Establishment and application of large-scale transformation systems in wheat.Sci Agric Sin, 2014, 47: 4155-4171 (in Chinese with English abstract)
[2] 韩晓峰, 陶丽莉, 殷桂香, 刘晓蕾, 杜丽璞, 魏亦勤, 晏月明, 叶兴国. 基因型和环境条件对小麦花药培养效果的影响. 作物学报, 2010, 36: 1209-1215
Han X F, Tao L L, Yin G X, Liu X L, Du L P, Wei Y Q, Yan Y M, Ye X G.Effect of genotype and growing environment on anther culture in wheat.Acta Agron Sin, 2010, 36: 1209-1215 (in Chinese with English abstract)
[3] She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G.Efficient Regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos inTriticum aestivum L. Mol Biotechnol, 2013, 54: 451-460
[4] Mathias R J, Fukui K, Law C.Cytoplasmic effects on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet, 1986, 72: 70-75
[5] He D, Yang Y, Scott K.A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium.Plant Sci, 1988, 57: 225-233
[6] Stober A, Hessu D.Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed, 1997, 116: 443-447
[7] Mendoza M G, Kaeppler H F.Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev-Pl, 2002, 38: 39-45
[8] Varshney A, Altpeter F.Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed, 2002, 8: 295-309
[9] Turhan H, Baser I.Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci, 2004, 3: 17-19
[10] Sharma V, Hänsch R, Mendel R, Schulze J.Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long‐term retention of morphogenecity using meristematic shoot segments. Plant Breed, 2005, 124: 242-246
[11] 叶兴国, 徐惠君, 徐琼芳, 杜丽璞, 李志武. 小麦花药培养力的基因型差异和配合力分析. 中国农业科学, 1997, 30(6): 49-54
Ye X G, Xu H J, Xu Q F, Du L P, Li Z W.Genetic analysis and combining ability evaluation of the anther culture response in common wheat.Sci Agric Sin, 1997, 30(6): 49-54 (in Chinese with English abstract)
[12] Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T.Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures.Plant Cell, Tiss Org, 1998, 53: 67-74
[13] Shah M, Khalid Q, Khan U, Shah S, Shah S, Hassan A, Pervez A, Oliveira V, Caxito F, Gomes K.Variation in genotypic responses and biochemical analysis of callus induction in cultivated wheat. Genet Mol Res, 2009, 8: 783-793
[14] Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye X G.Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agric Sci China, 2011, 10: 9-17
[15] Zamani I, Gouli Vavdinoudi E, Kovacs G, Xynias I, Roupakias D, Barnabas B.Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids.Plant Breed, 2003, 122: 314-317
[16] Ozias A P, Vasil I K.Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat): evidence for somatic embryogenesis. Protoplasma, 1982, 110: 95-105
[17] Bi R M, Kou M, Chen L G, Mao S R, Wang H G.Plant regeneration through callus initiation from mature embryo ofTriticum. Plant Breed, 2007, 126: 9-12
[18] Arzani A, Mirodjagh S S.Response of durum wheat cultivars to immature embryo culture, callus induction andin vitro salt stress. Plant Cell, Tiss Org, 1999, 58: 67-72
[19] Szakács E, Kovács G, Pauk J, Barnabás B.Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.). Plant Cell Rep, 1988, 7: 127-129
[20] Liu W G, Zheng M Y, Enrique A P, Calvin F K.Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci, 2002, 42: 686-692
[21] Tuvesson I K D, Pedersen S, Andersen S B. Nuclear genes affecting albinism in wheat (Triticum aestivum L.) anther culture. Theor Appl Genet, 1989, 78: 879-883
[22] Buyser D J, Hachemi-Rachedi S, Lemee M L, Sejourne S, Marcotte J J, Henry Y.Aneuploid analysis of anther culture response in wheat.Plant Breed, 1992, 109: 339-342
[23] Jia H Y, Yu J, Yi D L, Cheng Y, Xu W Q, Zhang L X, Ma Z Q.Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell, Tiss Org, 2009, 97: 159-165
[24] Jia H Y, Yi D L, Yu J, Xue S L, Xiang Y, Zhang C Q, Zhang Z Z, Zhang L, Ma Z Q.Mapping QTLs for tissue culture response of mature wheat embryos. Mol Cells, 2007, 23: 323-330
[25] Pellegrineschi A, Noguera L M, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M L, Hoisington D A.Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants.Genome, 2002, 45: 421-430
[26] Khanna H, Daggard G.Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep, 2003, 21: 429-436
[27] Greer M S, Kovalchuk I, Eudes F.Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation ofTriticum aestivum. New Biotechnol, 2009, 26: 44-52
[28] Ishida Y, Tsunashima M, Hiei Y, Komari T.Wheat (Triticum aestivum L.) transformation using immature embryos. In: Agrobacterium Protocols: Volume 1. Methods in Molecular Biology vol. 1223, (Wang K ed) New York: Springer Science+ Business Media, 2015. pp 189-198
[29] Zhou H, Berg J D, Blank S E, Chay C A, Chen G, Eskelsen S R, Fry J E, Hoi S, Hu T, Isakson P J, Lawton M B, Metz S G, Rempel C B, Ryerson D K, Sansone A P, Shook A L, Starke R J, Tichota J M, Valenti S A.Field efficacy assessment of transgenic roundup ready wheat.Crop Sci, 2003, 43: 1072-1075
[30] Stokstad E.Biotechnology-Monsanto pulls the plug on genetically modified wheat.Science, 2004, 304: 1088-1089
[31] 叶兴国, 徐惠君, 赵乐莲, 杜丽璞. 组织培养途径改良定型小麦品种的研究. 作物学报, 1998, 24: 310-314
Ye X G, Xu H J, Zhao L L, Du L P.Studies on improving wheat cultivars by tissue culture.Acta Agron Sin, 1998, 24: 310-314 (in Chinese with English abstract)
[32] 叶兴国, 徐惠君, 杜丽璞, 辛志勇. 小麦遗传转化几个因素的研究. 中国农业科学, 2001, 34: 128-132
Ye X G, Xu H J, Du L P, Xin Z Y.Studies on the factors influencing the efficiency of wheat transformation.Sci Agric Sin, 2001, 34: 128-132 (in Chinese with English abstract)
[33] Zhang W, Wang X M, Fan R, Yin G X, Wang K, Du L P, Xiao L L, Ye X G.Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos.J Integr Agric, 2015, 14: 11-19
[34] 叶兴国, 佘茂云, 王轲, 杜丽璞, 徐惠君. 植物组织培养再生相关基因鉴定、克隆和应用研究进展. 作物学报, 2012, 38: 191-201
Ye X G, She M Y, Wang K, Du L P, Xu H J.Identification, cloning, and potential application of genes related to somatic embryogenesis in plant tissue culture. Acta Agron Sin, 2012, 38: 191-201 (in Chinese with English abstract)
[35] Wang X M, Wang K, Li J R, Du L P, Li J R, Xu H J, Ye X G.Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). J Integr Agric, 2014, 13: 722-732
[36] Chauhan H, Khurana P.Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J, 2011, 9: 408-417
[37] Wang Y L, Xu M X, Yin G X, Tao L L, Wang D W, Ye X G.Transgenic wheat plants derived fromAgrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun, 2009, 37: 1-12
[38] Li J R, Ye X G, An B Y, Du L P, Xu H J.Genetic transformation of wheat: current status and future prospects.Plant Biotechnol Rep, 2012, 6: 183-193
[39] Tao L L, Yin G X, Du L P, Shi Z Y, She M Y, Xu H J, Ye X G.Improvement of plant regeneration from immature embryos of wheat infected byAgrobacterium tumefaciens. Agric Sci China, 2011, 10: 317-326
[40] Richardson T, Thistleton J, Higgins T J, Howitt C, Ayliffe M.EfficientAgrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tiss Organ, 2014, 119: 647-659
[41] Wang K, Liu H Y, Du L P, Ye X G.Generation of marker-free transgenic hexaploid wheat via anAgrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017, 15: 614-623
[42] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38: 1827-1832
Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S.Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins ofHaynaldia villosa. Acta Agron Sin, 2012, 38: 1827-1832 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!