作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1477-1484.doi: 10.3724/SP.J.1006.2018.01477
崔国庆1,王世明1,马福盈1,汪会1,向朝中2,李云峰1,何光华1,张长伟1,杨正林1,凌英华1,赵芳明1,*()
Guo-Qing CUI1,Shi-Ming WANG1,Fu-Ying MA1,Hui WANG1,Chao-Zhong XIANG2,Yun-Feng LI1,Guang-Hua HE1,Chang-Wei ZHANG1,Zheng-Lin YANG1,Ying-Hua LING1,Fang-Ming ZHAO1,*()
摘要:
株高是水稻重要的农艺性状, 往往与产量相关性状密切关联, 在水稻育种中有重要利用价值。本研究以日本晴为受体、缙恢35为供体亲本, 经表型和分子标记双重选择, 鉴定了一个水稻高秆染色体片段代换系Z1377。Z1377共含有18个代换片段, 平均代换长度为2.95 Mb。与日本晴相比, Z1377的株高、倒一节间至倒四节间长、穗长、一次枝梗数、二次枝梗数、粒长、每穗实粒数、总粒数显著增加; 粒宽显著变细, 有效穗数、结实率显著减少, 但仍达86.75%。用日本晴与Z1377杂交构建的次级F2群体共检测到16个相关QTL, 分布于第2、第3、第4、第5、第6、第7和第9染色体。其中有8个可能与已克隆基因等位, 如GW2、EUI1、ZFP185等, 另8个如qPH3等尚未见报道。Z1377的株高由一个主效QTL (qPH3)和一个微效QTL (qPH5)控制, 其中qPH3的贡献率达28.59%。而且, 在F2群体中, 高秆和矮秆基本呈现双峰分布, 经卡平方测验, 符合3∶1分离比, 表明高秆对矮秆显性, 并主要由qPH3负责。这将为该主效基因的精细定位和克隆奠定基础, 同时为进一步选育含2~3个代换片段的中高优良染色体片段代换系并应用于育种奠定基础。
[1] | Wang Y H, Li J Y . The plant architecture of rice (Oryza sativa L.). Plant Mol Biol, 2005,59:75-84 |
[2] | Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y . Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17 |
[3] |
Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C . Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 2014,26:4376-4393
doi: 10.1105/tpc.114.132092 pmid: 25371548 |
[4] | Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z . OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. Plant J, 2014,80:1118-1130 |
[5] |
Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508
doi: 10.1046/j.1365-313X.2002.01438.x |
[6] | Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y . A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf nutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790 |
[7] | Tong H N, Jin Y, Liu W B, Li F, Fang J, Yin Y H, Qian Q, Zhu L H, Chu C C . DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles inbrassinosteroid singaling in rice. Plant J, 2009,58:803-816 |
[8] |
Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T . A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol, 2010,51:1143-1150
doi: 10.1093/pcp/pcq077 pmid: 20522488 |
[9] | 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华 . 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7 |
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H . Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer line. J Southwest Univ (Nat Sci Edn), 2016,38(11):1-7 (in Chinese with English abstract) | |
[10] | 向佳, 李燕, 樊亚伟, 许军红, 郑丽媛, 何光华, 杨正林, 王楠, 赵芳明 . 一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位. 作物学报, 2015,41:683-691 |
Xiang J, Li Y, Fan Y W, Xu J H, Zheng L Y, He G H, Yang Z L, Wang N, Zhao F M . Identification and morphological analysis of a rice chromosome segment substitution line carrying a major effect gene for late heading date and mapping of Ehd4-2. Acta Agron Sin, 2015,41:683-691 (in Chinese with English abstract) | |
[11] | Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D . Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197 |
[12] |
Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z . Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380
doi: 10.1556/0806.44.2016.022 |
[13] | Furuta T, Uehara K , Angeles-Shim R B, Shim J, Ashikari M, Takashi T. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed Sci, 2014,63:468-475 |
[14] | 王坚, 赵开军, 乔枫, 杨生龙 . OsGA20ox2不同长度RNAi片段对水稻株高等农艺性状的遗传效应. 作物学报, 2012,38:632-638 |
Wang J, Zhao K J, Qiao F, Yang S L . Genetic effects of different RNA interference fragments from OsGA20ox2 on plant height and other agronomic traits in rice. Acta Agron Sin, 2012,38:632-638 (in Chinese with English abstract) | |
[15] | Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J, Zhu X D, Mander L N, Kamiya Y, Yamaguchi S, He Z H . ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006,18:442-456 |
[16] | Zhang Y, Lan H X, Shao Q L, Wang R Q, Chen H, Tang H J, Zhang H S, Huang J . An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J Exp Bot, 2016,67:315-326 |
[17] | Chen J, Gao H, Zheng X M, Jin M N, Weng J F, Ma J, Ren Y L, Zhou K N, Wang Q, Wang J, Wang J L, Zhang X, Cheng Z J, Wu C Y, Wang H Y, Wan J M . An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J, 2015,83:427-438 |
[18] | Li M, Tang D, Wang K J, Wu X R, Lu L L, Yu H X, Gu M H, Yan C J, Cheng Z K . Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J, 2011,9:1002-1013 |
[19] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014 |
[20] |
Heang D, Sassa H . Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012,7(2):e31325
doi: 10.1371/journal.pone.0031325 pmid: 3283642 |
[21] | Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, Tagiri A, Hara N, Miyao A, Hirochika H, Kitano H, Yano M, Toki S . A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed Sci, 2011,61:17-25 |
[22] | Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D . Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497 |
[23] | 刘胜男, 张华, 柳絮, 李广贤, 杨永义, 姚方印 . 水稻株高和产量相关性状的QTL定位. 山东农业科学, 2015,47(4):8-12 |
Liu S N, Zhang H, Liu X, Li G X, Yang Y Y, Yao F Y . QTL mapping of plant height and yield-related traits of rice. Shandong Agric Sci, 2015,47(4):8-12 | |
[24] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
doi: 10.1038/ng.143 |
[25] | Jones D F . Dominance of linked factors as a means of accounting for heterosis. Genetics, 1997,2:466-479 |
[26] |
Cai W, Morishima H . QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet, 2002,104:1217-1228
doi: 10.1007/s00122-001-0819-7 pmid: 12582574 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|