作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1875-1881.doi: 10.3724/SP.J.1006.2018.01875
刘长友1,苏秋竹1,范保杰1,曹志敏1,张志肖1,武晶2,程须珍2,田静1,*()
Chang-You LIU1,Qiu-Zhu SU1,Bao-Jie FAN1,Zhi-Min CAO1,Zhi-Xiao ZHANG1,Jing WU2,Xu-Zhen CHENG2,Jing TIAN1,*()
摘要:
对抗豆象资源中蕴藏的抗豆象基因进行定位, 是对其充分利用的前提和基础。本研究通过对抗豆象栽培绿豆V1128和感豆象栽培绿豆冀绿7号杂交形成的F2分离群体进行抗豆象鉴定, 分析V1128抗豆象遗传规律; 并利用混合群体分离分析法(BSA法)筛选抗感池间的多态性标记, 进而利用QTL IciMapping 4.0对V1128抗豆象基因进行染色体定位分析。结果表明, V1128对绿豆象的抗性由具有主效作用的显性单基因控制, 暂命名其为“Br3”。在将抗豆象性状作为质量性状的条件下, 按照显性单基因的定位方法, 将抗豆象基因Br3定位在绿豆染色体5上, 位于标记DMB158和VRBR-SSR033 (标记VRID5、VRBR-SSR032与VRBR-SSR033的连锁群位置相同)之间, 两侧遗传距离分别为4.4 cM和5.8 cM, 所在物理区间约288 kb。将抗豆象性状作为数量性状, 采用完备区间作图法(ICIM)对种子被害率进行QTL定位, 同样在标记DMB158和VRBR-SSR033之间检测到1个主效QTL, 其LOD值为38.04, 可以解释表型变异(PVE)的71.64%, 来自父本V1128的等位基因具有明显减少种子被害率的效应。该研究结果可以为绿豆抗豆象分子标记辅助育种及抗豆象基因Br3的精细定位和克隆提供有用信息。
[1] |
Yao Y, Cheng X, Ren G . A 90-day study of three bruchid-resistant mungbean cultivars in Sprague-Dawley rats. Food Chem Toxicol, 2015,76:80-85
doi: 10.1016/j.fct.2014.11.024 pmid: 25533792 |
[2] |
王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527
doi: 10.3864/j.issn.0578-1752.2009.05.003 |
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.), Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.05.003 |
|
[3] |
程须珍, 王素华, 金达生, 杨又迪, 吴绍宇, 周吉红 . 绿豆抗豆象遗传的初步研究. 植物遗传资源学报, 2001,2(4):12-15
doi: 10.3969/j.issn.1672-1810.2001.04.003 |
Cheng X Z, Wang S H, Jin D S, Yang Y D, Wu S Y, Zhou J H . Preliminary study on heredity of mungbean resistance to bruchid. J Plant Genet Resour, 2001,2(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2001.04.003 |
|
[4] | 刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华 . 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010,43:2410-2417 |
Liu C Y, Tian J, Fan B J, Cao Z M, Su Q Z, Zhang Z X, Wang S H . Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Sci Agric Sin, 2010,43:2410-2417 (in Chinese with English abstract) | |
[5] |
Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y . The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000,115:27-41
doi: 10.1023/A:1003906715119 |
[6] |
金文林, 谭瑞娟, 王进忠, 张志勇, 刘长安, 濮绍京, 赵波 . 田间小豆绿豆象卵空间分布型初探. 植物保护, 2004,30(6):34-36
doi: 10.3969/j.issn.0529-1542.2004.06.008 |
Jin W L, Tan R J, Wang J Z, Zhang Z Y, Liu C A, Pu S J, Zhao B . Preliminary study on spatial distribution pattern of Callosobruchus Chinensis egg in adzuki bean field. Plant Prot, 2004,30(6):34-36 (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2004.06.008 |
|
[7] | Fujii K, Miyazaki S . Infestation resistance of wild legumes (Vigna sublobata) to adzuki bean weevil, Callosobruchus chinensis( L.), 1987,22:229-230 |
[8] | Lambrides C J, Imrie B C . Susceptibility of mungbean varieties to the bruchid speciesCallosobruchus maculatus (F.), C. phaseoli, 2000,51:85-90 |
[9] |
Talekar N S, Lin C P . Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992,85:1150-1153
doi: 10.1093/jee/85.4.1150 |
[10] | Somta C, Somta P, Tomooka N, Ooi A C, Vaughan D A, Srinives P . Characterization of new sources of mungbean (Vigna radiata(L.) Wilczek) resistance to bruchids, Callosobruchus spp., 2008,44:316-321 |
[11] | Kitamura K, Ishimoto M, Sawa M . Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed, 2008,38:459-464 |
[12] |
Kaga A, Ishimoto M . Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Genet Genomics, 1998,258:378-384
doi: 10.1007/s004380050744 pmid: 9648742 |
[13] |
Chen H M, Ku H M, Schafleitner R, Bains T S, Kuo G C, Liu C A, Nair R M . The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata(L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica, 2013,192:205-216
doi: 10.1007/s10681-012-0831-9 |
[14] |
Somta P, Ammaranan C, Ooi P, Srinives P . Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica, 2007,155:47-55
doi: 10.1007/s10681-006-9299-9 |
[15] |
Young N D, Kumar L, Menancio-Hautea D, Danesh D . RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet, 1992,84:839-844
doi: 10.1007/BF00227394 pmid: 24201484 |
[16] |
Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156
doi: 10.1007/s00122-004-1821-7 pmid: 15490104 |
[17] |
Mei L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Sun L, Xu N, Humphry M E, Lambrides C J, Li H B, Liu C J . Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome, 2009,52:589-596
doi: 10.1139/G09-031 pmid: 19767890 |
[18] |
Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X . Construction of an integrated map and location of a bruchid resistance gene in mungbean. Crop J, 2016,4:360-366
doi: 10.1016/j.cj.2016.06.010 |
[19] | 孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁 . 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008,41:1291-1296 |
Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N . Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Sci Agric Sin, 2008,41:1291-1296 (in Chinese with English abstract) | |
[20] |
Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P . A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet, 2016,129:1673-1683
doi: 10.1007/s00122-016-2731-1 pmid: 27220975 |
[21] |
Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P . Novel Alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br Locus that confer bruchid (Callosobruchus spp.) resistance to mungbean(Vigna radiata) accession V2709. Front Plant Sci, 2017,8:1692
doi: 10.3389/fpls.2017.01692 pmid: 29033965 |
[22] |
Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535
doi: 10.1007/s12041-016-0663-9 pmid: 27659323 |
[23] |
Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S . Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet, 2017,130:2375-2393
doi: 10.1007/s00122-017-2965-6 pmid: 28831522 |
[24] |
Gwag J G, Chung J W, Chung H K, Lee J H, Kyung-Ho M A, Dixit A, Park Y J, Cho E G, Kim T S, Lee S H . Characterization of new microsatellite markers in mung bean,Vigna radiata(L.). Mol Ecol Notes, 2007,6:1132-1134
doi: 10.1111/j.1471-8286.2006.01461.x |
[25] |
Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943
doi: 10.1007/s10592-009-9860-x |
[26] |
Grisi M C, Blair M W, Gepts P, Brondani C, Pereira P A, Brondani R P . Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93×Jalo EEP558. Genet Mol Res, 2007,6:691-706
doi: 10.1590/S1415-47572007000600029 pmid: 18050090 |
[27] |
Meng L, Li H, Zhang L, Wang J . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283
doi: 10.1016/j.cj.2015.01.001 |
[28] |
Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1943,12:172-175
doi: 10.1111/j.1469-1809.1943.tb02321.x |
[29] |
Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5 pmid: 17985112 |
[30] |
Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185 |
[31] |
Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443
doi: 10.1038/ncomms6443 pmid: 25384727 |
[32] |
Hong M G, Kilhyun K, Jahwan K, Jinkyo J, Minjung S, Changhwan P, Yulho K, Hongsik K, Yongkwon K, Sohyeon B . Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotech, 2015,3:39-46
doi: 10.9787/PBB.2015.3.1.039 |
[33] |
Liu M S, Kuo T C Y, Ko C Y, Wu D Y, Li K S, Lin W J, Ko C Y, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F O . Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol, 2016,16:46
doi: 10.1186/s12870-016-0736-1 pmid: 26887961 |
[34] | Vasconcellos R C, Lima T F, Fernandesbrum C N, Chalfunjunior A, Santos J B . Expression and validation of pvpgip genes for resistance to white mold(Sclerotinia sclerotiorum) in common beans, 2016,15:15038269 |
[35] |
D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, Lorenzo G D . Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol, 2004,135:2424-2435
doi: 10.1104/pp.104.044644 pmid: 15299124 |
[36] | Yamaguchi-Shinozaki K, Shinozaki K . The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet, 1993,238:17-25 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[4] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[5] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[6] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[7] | 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187. |
[8] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[9] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[10] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[11] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[12] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[13] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[14] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
[15] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
|