欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1875-1881.doi: 10.3724/SP.J.1006.2018.01875

• 研究简报 • 上一篇    下一篇

栽培绿豆V1128抗豆象基因定位

刘长友1,苏秋竹1,范保杰1,曹志敏1,张志肖1,武晶2,程须珍2,田静1,*()   

  1. 1 河北省农林科学院粮油作物研究所 / 河北省作物遗传育种实验室, 河北石家庄 050031
    2 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2018-05-08 接受日期:2018-08-20 出版日期:2018-12-12 网络出版日期:2018-09-18
  • 通讯作者: 田静
  • 基金资助:
    本研究由国家自然科学基金项目(31601367);国家现代农业产业技术体系建设专项(CARS-08);河北省科技计划项目(16227508D);河北省现代农业科技创新工程项目资助(F18R494004-01)

Genetic Mapping of Bruchid Resistance Gene in Mungbean V1128

Chang-You LIU1,Qiu-Zhu SU1,Bao-Jie FAN1,Zhi-Min CAO1,Zhi-Xiao ZHANG1,Jing WU2,Xu-Zhen CHENG2,Jing TIAN1,*()   

  1. 1 Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang 050031, Hebei, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-05-08 Accepted:2018-08-20 Published:2018-12-12 Published online:2018-09-18
  • Contact: Jing TIAN
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(31601367);the China Agriculture Research System(CARS-08);the Science and Technology Program of HebeiProvince (F18R494004-01).(16227508D);the Modern Agricultural Science and Technology Innovation Program of Hebei Province(F18R494004-01)

摘要:

对抗豆象资源中蕴藏的抗豆象基因进行定位, 是对其充分利用的前提和基础。本研究通过对抗豆象栽培绿豆V1128和感豆象栽培绿豆冀绿7号杂交形成的F2分离群体进行抗豆象鉴定, 分析V1128抗豆象遗传规律; 并利用混合群体分离分析法(BSA法)筛选抗感池间的多态性标记, 进而利用QTL IciMapping 4.0对V1128抗豆象基因进行染色体定位分析。结果表明, V1128对绿豆象的抗性由具有主效作用的显性单基因控制, 暂命名其为“Br3”。在将抗豆象性状作为质量性状的条件下, 按照显性单基因的定位方法, 将抗豆象基因Br3定位在绿豆染色体5上, 位于标记DMB158和VRBR-SSR033 (标记VRID5、VRBR-SSR032与VRBR-SSR033的连锁群位置相同)之间, 两侧遗传距离分别为4.4 cM和5.8 cM, 所在物理区间约288 kb。将抗豆象性状作为数量性状, 采用完备区间作图法(ICIM)对种子被害率进行QTL定位, 同样在标记DMB158和VRBR-SSR033之间检测到1个主效QTL, 其LOD值为38.04, 可以解释表型变异(PVE)的71.64%, 来自父本V1128的等位基因具有明显减少种子被害率的效应。该研究结果可以为绿豆抗豆象分子标记辅助育种及抗豆象基因Br3的精细定位和克隆提供有用信息。

关键词: 绿豆, 抗豆象, V1128, Br3, QTL

Abstract:

It is an urgent research topic to map the bruchid resistance gene and to carry out bruchid resistance breeding using molecular marker-assisted method in mungbean. This study was carried out to identify a F2 isolated group formed by the hybrid of a bruchid-resistant cultivar “V1128” and a bruchid-susceptible cultivar “Jilyu 7”, and to analyze the genetic regularity of V1128 in resistance to bruchids. The bulked segregant analysis (BSA) method was used for screening the polymorphic markers. Genetic linkage map construction and quantitative trait locus (QTL) mapping were conducted using software QTL IciMapping 4.0. The results showed that the bruchid resistance of V1128 was controlled by a dominant gene with main effect. According to previous naming rules, the bruchid resistance gene of V1128 was temporarily named as “Br3”. When we treated bruchid-resistance as a quality trait, Br3 was used as a marker for linkage map construction and was positioned between the markers DMB158 and VRBR-SSR033 (VRID5, VRBR-SSR032, and VRBR-SSR033 are located at the same map position). The genetic distances of Br3 away from the two markers were 4.4 cM and 5.8 cM, respectively. Br3 was positioned on chromosome 5 in the physical range of about 288 kb. By using the inclusive composite interval mapping (ICIM) to locate the seed damage rate, a main QTL locus with LOD score of 38.04 was identified in the marker intervals from DMB158 to VRBR-SSR033, contributing 71.64% of the observed phenotypic variation. The allele of male parent V1128 had a significant effect on reducing the rate of seed damage. The results can provide useful information for the molecular marker-assisted breeding of mungbean, and the fine localization and cloning of Br3.

Key words: mungbean, bruchid resistance, V1128, Br3, QTL

表1

多态性标记信息"

标记名称
Marker
标记类型
Type
引物序列
Primer sequence (5′-3′)
退火温度
Tm
文献来源
Reference
Mchr5-17 SSR F: GCTTGCTTATGCTCAAAACT; R: TACAGATAAACCCAAGCCAT 55 [23]
Mchr5-20 SSR F: TCAAAACTTTCACTGGACCT; R: GCTGTTTGTCACATGCATAA 55 [23]
Mchr5-23 SSR F: ATCTTAATCCCATCCTTGGT; R: AACTGGCTTGTAAGGTGAGA 55 [23]
Mchr5-25 SSR F: CCGTTGTGAATCAACTTTTC; R: GAGTCGTCGTGTAATCCTTC 55 [23]
Mchr5-32 SSR F: ACTTGTAGGTGGAAGAGATGA; R: GATTAAGGGCGTGTTTTGT 55 [23]
Mchr5-33 SSR F: CTAATGAAACAGGACAAGGG; R: CTCACTCTTCTCATTCCACC 55 [23]
Mchr5-36 SSR F: ACCTACTGATTGGTGTTTGG; R: CAGTGAATGCTGACAGTGAC 55 [23]
Mchr5-37 SSR F: AACGGTTGGAGTTAGGAAAT; R: TGAACATCACCAACTATCAC 55 [23]
Mchr3-85 SSR F: AACAGCGTTGATTTATGGAC; R: AATCATGTTGGTGTGTTGTG 55 [23]
Mchr3-86 SSR F: TGCCTAAGGGTCAATTTCTA; R: ATGCACCAGAAGACAAAAAC 55 [23]
Mchr3-87 SSR F: AATGAGGTAATGCAGAGGTG; R: GACAAGGGTTGTTGTTCACT 55 [23]
Mchr3-89 SSR F: GAATTAAAGCCCTTGTTCTG; R: GGTGAATTTTCTGTTTCCAC 55 [23]
Mchr3-96 SSR F: CTGATGCTATTTCCATCCAT; R: TAACCTTTTGCATTTGGTGC 55 [23]
MUS150 SSR F: GCTGTTTGTCACATGCATAA; R: TCAAAACTTTCACTGGACCT 55 [23]
MUS365 SSR F: TGAGCCCGATTTTTATCTC;R: GCTCACAGATAACTGACACAAC 55 [23]
MUS569 SSR F: GGAGGGGATTTTTAAGATTG; R: GGATACGATTTTGTCGTGTT 55 [23]
HAAS_VR_379 SSR F: CCTATCCGAATCGACACCAC; R: GTAGCAATAGCAGCCCAAGG 55 [22]
HAAS_VR_106 SSR F: ACGGCTATTCATCGTTTTGC; R: CAACCCGAAGCCAAAAACTA 55 [22]
HAAS_VR_89 SSR F: GCTGGAAGGATCCAATTTCA; R: TCGCCATTCCCAAGATAAAG 55 [22]
HAAS_VR_1701 SSR F: CCGGGGTGAAATTGATACAC; R: CAAAGGGGCTATGAACAGGA 55 [22]
VRID1 Indel F: TCGGTTTCAGCTCGATAGATTC; R: GATGTTGTCTGAAGTAGTGGTA 55 [21]
VRID5 Indel F: AGAATAAAATGAATCTAGAAGACCA; R: TGAATTAATTTTCTTACCCTTGT 50 [21]
VRBR-SSR016 SSR F: GACGGCTAGGTACAACACTGC; R: TTTAGAGCAATTGGGTGGATTT 55 [20]
VRBR-SSR024 SSR F: TTTTGTGGACACTCCTTCCA; R: AAGCGTCACACCCTCAATTC 55 [20]
VRBR-SSR030 SSR F: CAGCTAGGAAACTCACCAAACC; R: CAGCTGGCAGGTGAAATATG 55 [20]
VRBR-SSR032 SSR F: GGTTATTTTGATCTAAAGGGCCA; R: GTGTGAGAAGATTTGGGAATGTAA 55 [20]
VRBR-SSR033 SSR F: CTCAAGTCTTATGTTTCCCCCTAT; R: GCACTAAAGGACTTTCCTTGAAC 55 [20]
VRBR-SSR039 SSR F: AAGTTGGTGTAGCACTTGCAGA; R: AATGAATTAAAAGAAAACACTACTG 55 [20]
GBssr-MB87 SSR F: TCCCTTGTGGGAGATCCT; R: CTTTGCCACACTCCTTGC 55 [24]
DMB158 SSR F: TGGAAAATTTGCAGCAGTTG; R: ATTGATGGAGGGCGGAAGTA 55 [25]
PVBR201 SSR F: GTGATGGTGCTGCTTTTCAA; R: ATGCGTGGGGAGAAGTAAGA 50 [26]

图1

F2群体种子被害率分布图"

图2

抗豆象基因Br3连锁定位分析 利用QTL IciMapping 4.0软件进行标记连锁分析, LOD=5; 连锁群左右两侧分别标示图距(单位为cM)和标记名称。"

图3

抗豆象QTL qBr3的定位图谱 利用QTL IciMapping 4.0软件的完备区间作图法(ICIM)进行QTL 定位分析; 连锁群左右两侧分别标示图距(单位为cM)和标记名称; 竖线标示LOD阈值(3.18)。"

图4

QTL定位结果共线性比较分析 基于7个共有标记, 利用MapChart 2.2软件[30]作本研究与Kaewwongwal等[21]构建的连锁图谱的共线性图谱; 左侧标尺标示连锁群长度, 单位为cM; “LG1”为本研究构建的连锁图谱, “LG2”为Kaewwongwal等构建的连锁图谱; QTL名字用斜体字标示。"

表2

V1128抗豆象基因位点范围内基因注释"

基因序号
Gene ID
基因位置
Gene location
基因注释
Gene annotation
LOC106760111 5 338 753…5 340 435 RD22类蛋白 RD22-like protein
LOC106761406 5 346 646…5 349 613 未知蛋白 Uncharacterized protein
LOC106760112 5 361 741…5 362 985 未知蛋白 Uncharacterized protein
LOC106761824 5 367 108…5 367 592 RD22类蛋白 RD22-like protein
LOC106761559 5 389 064…5 390 972 RD22类蛋白 RD22-like protein
LOC111241568 5 403 161…5 404 109 未知蛋白 Uncharacterized protein
LOC106760880 5 409 223…5 413 311 RD22类蛋白 RD22-like protein
LOC106761219 5 511 814…5 514 459 RD22类蛋白 RD22-like protein
LOC106760236 5 561 973…5 563 546 多聚半乳糖醛酸酶抑制剂类蛋白(VrPGIP1) Polygalacturonase inhibitor-like (VrPGIP1)
LOC106760237 5 590 847…5 591 984 多聚半乳糖醛酸酶抑制剂类蛋白(VrPGIP2) Polygalacturonase inhibitor-like (VrPGIP2)
LOC106760238 5 590 527…5 598 757 假基因 Pseudogene
[1] Yao Y, Cheng X, Ren G . A 90-day study of three bruchid-resistant mungbean cultivars in Sprague-Dawley rats. Food Chem Toxicol, 2015,76:80-85
doi: 10.1016/j.fct.2014.11.024 pmid: 25533792
[2] 王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527
doi: 10.3864/j.issn.0578-1752.2009.05.003
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.), Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.05.003
[3] 程须珍, 王素华, 金达生, 杨又迪, 吴绍宇, 周吉红 . 绿豆抗豆象遗传的初步研究. 植物遗传资源学报, 2001,2(4):12-15
doi: 10.3969/j.issn.1672-1810.2001.04.003
Cheng X Z, Wang S H, Jin D S, Yang Y D, Wu S Y, Zhou J H . Preliminary study on heredity of mungbean resistance to bruchid. J Plant Genet Resour, 2001,2(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2001.04.003
[4] 刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华 . 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010,43:2410-2417
Liu C Y, Tian J, Fan B J, Cao Z M, Su Q Z, Zhang Z X, Wang S H . Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Sci Agric Sin, 2010,43:2410-2417 (in Chinese with English abstract)
[5] Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y . The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000,115:27-41
doi: 10.1023/A:1003906715119
[6] 金文林, 谭瑞娟, 王进忠, 张志勇, 刘长安, 濮绍京, 赵波 . 田间小豆绿豆象卵空间分布型初探. 植物保护, 2004,30(6):34-36
doi: 10.3969/j.issn.0529-1542.2004.06.008
Jin W L, Tan R J, Wang J Z, Zhang Z Y, Liu C A, Pu S J, Zhao B . Preliminary study on spatial distribution pattern of Callosobruchus Chinensis egg in adzuki bean field. Plant Prot, 2004,30(6):34-36 (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2004.06.008
[7] Fujii K, Miyazaki S . Infestation resistance of wild legumes (Vigna sublobata) to adzuki bean weevil, Callosobruchus chinensis( L.), 1987,22:229-230
[8] Lambrides C J, Imrie B C . Susceptibility of mungbean varieties to the bruchid speciesCallosobruchus maculatus (F.), C. phaseoli, 2000,51:85-90
[9] Talekar N S, Lin C P . Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992,85:1150-1153
doi: 10.1093/jee/85.4.1150
[10] Somta C, Somta P, Tomooka N, Ooi A C, Vaughan D A, Srinives P . Characterization of new sources of mungbean (Vigna radiata(L.) Wilczek) resistance to bruchids, Callosobruchus spp., 2008,44:316-321
[11] Kitamura K, Ishimoto M, Sawa M . Inheritance of resistance to infestation with adzuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed, 2008,38:459-464
[12] Kaga A, Ishimoto M . Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Genet Genomics, 1998,258:378-384
doi: 10.1007/s004380050744 pmid: 9648742
[13] Chen H M, Ku H M, Schafleitner R, Bains T S, Kuo G C, Liu C A, Nair R M . The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata(L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica, 2013,192:205-216
doi: 10.1007/s10681-012-0831-9
[14] Somta P, Ammaranan C, Ooi P, Srinives P . Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata, L. Wilczek). Euphytica, 2007,155:47-55
doi: 10.1007/s10681-006-9299-9
[15] Young N D, Kumar L, Menancio-Hautea D, Danesh D . RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata, L. Wilczek). Theor Appl Genet, 1992,84:839-844
doi: 10.1007/BF00227394 pmid: 24201484
[16] Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156
doi: 10.1007/s00122-004-1821-7 pmid: 15490104
[17] Mei L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Sun L, Xu N, Humphry M E, Lambrides C J, Li H B, Liu C J . Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. Genome, 2009,52:589-596
doi: 10.1139/G09-031 pmid: 19767890
[18] Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X . Construction of an integrated map and location of a bruchid resistance gene in mungbean. Crop J, 2016,4:360-366
doi: 10.1016/j.cj.2016.06.010
[19] 孙蕾, 程须珍, 王素华, 王丽侠, 刘长友, 梅丽, 徐宁 . 栽培绿豆V2709抗豆象特性遗传及基因初步定位. 中国农业科学, 2008,41:1291-1296
Sun L, Cheng X Z, Wang S H, Wang L X, Liu C Y, Mei L, Xu N . Heredity analysis and gene mapping of bruchid resistance of a mungbean cultivar V2709. Sci Agric Sin, 2008,41:1291-1296 (in Chinese with English abstract)
[20] Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P . A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet, 2016,129:1673-1683
doi: 10.1007/s00122-016-2731-1 pmid: 27220975
[21] Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P . Novel Alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br Locus that confer bruchid (Callosobruchus spp.) resistance to mungbean(Vigna radiata) accession V2709. Front Plant Sci, 2017,8:1692
doi: 10.3389/fpls.2017.01692 pmid: 29033965
[22] Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535
doi: 10.1007/s12041-016-0663-9 pmid: 27659323
[23] Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S . Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet, 2017,130:2375-2393
doi: 10.1007/s00122-017-2965-6 pmid: 28831522
[24] Gwag J G, Chung J W, Chung H K, Lee J H, Kyung-Ho M A, Dixit A, Park Y J, Cho E G, Kim T S, Lee S H . Characterization of new microsatellite markers in mung bean,Vigna radiata(L.). Mol Ecol Notes, 2007,6:1132-1134
doi: 10.1111/j.1471-8286.2006.01461.x
[25] Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943
doi: 10.1007/s10592-009-9860-x
[26] Grisi M C, Blair M W, Gepts P, Brondani C, Pereira P A, Brondani R P . Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93×Jalo EEP558. Genet Mol Res, 2007,6:691-706
doi: 10.1590/S1415-47572007000600029 pmid: 18050090
[27] Meng L, Li H, Zhang L, Wang J . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283
doi: 10.1016/j.cj.2015.01.001
[28] Kosambi D D . The estimation of map distances from recombination values. Ann Hum Genet, 1943,12:172-175
doi: 10.1111/j.1469-1809.1943.tb02321.x
[29] Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[30] Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[31] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443
doi: 10.1038/ncomms6443 pmid: 25384727
[32] Hong M G, Kilhyun K, Jahwan K, Jinkyo J, Minjung S, Changhwan P, Yulho K, Hongsik K, Yongkwon K, Sohyeon B . Inheritance and quantitative trait loci analysis of resistance genes to bruchid and bean bug in mungbean (Vigna radiata L. Wilczek). Plant Breed Biotech, 2015,3:39-46
doi: 10.9787/PBB.2015.3.1.039
[33] Liu M S, Kuo T C Y, Ko C Y, Wu D Y, Li K S, Lin W J, Ko C Y, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F O . Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol, 2016,16:46
doi: 10.1186/s12870-016-0736-1 pmid: 26887961
[34] Vasconcellos R C, Lima T F, Fernandesbrum C N, Chalfunjunior A, Santos J B . Expression and validation of pvpgip genes for resistance to white mold(Sclerotinia sclerotiorum) in common beans, 2016,15:15038269
[35] D'Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, Lorenzo G D . Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol, 2004,135:2424-2435
doi: 10.1104/pp.104.044644 pmid: 15299124
[36] Yamaguchi-Shinozaki K, Shinozaki K . The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet, 1993,238:17-25
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[13] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[14] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[15] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!