欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 824-835.doi: 10.3724/SP.J.1006.2018.00824

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫

毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄()   

  1. 福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心, 福建福州 350002
  • 收稿日期:2017-12-10 接受日期:2018-03-15 出版日期:2018-06-12 网络出版日期:2018-03-19
  • 通讯作者: 阙友雄
  • 基金资助:
    本研究由国家自然科学基金项目(31671752);福建省杰出青年基金项目(2015J06006);国家农业产业技术体系建设专项资助(CARS-17)

A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses

Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University / Sugarcane Research & Development Center, China Agricultural Technology System, Fuzhou 350002, Fujian, China
  • Received:2017-12-10 Accepted:2018-03-15 Published:2018-06-12 Published online:2018-03-19
  • Contact: You-Xiong QUE
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671752);the Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2015J06006);the China Agriculture Research System(CARS-17)

摘要:

Sec14-like磷脂酰肌醇转运蛋白(Sec14-like phosphatidylinositol transfer proteins, PITPs), 广泛存在于真核生物细胞中, 参与肌醇磷酸代谢、膜运输、极性生长、信号转导、逆境胁迫等多种重要的生命过程。甘蔗中响应干旱和盐胁迫的Sec14-like基因尚未见报道。本研究从甘蔗受黑穗病胁迫的转录组数据库中获得一条SEC14基因序列, 并利用RT-PCR技术克隆得到甘蔗SEC14基因cDNA全长序列, 命名为ScSEC14 (GenBank登录号为MG571103)。生物信息学分析显示, ScSEC14基因全长1617 bp, 包含一个1008 bp的完整开放阅读框, 编码335个氨基酸; ScSEC14为不稳定的亲水性蛋白, 不存在信号肽; 蛋白二级结构元件多为α-螺旋, 具有典型的SEC14结构域和CRAL_TRIO_N结构域。此外, 系统进化树分析揭示, 该蛋白属于Sec14-like蛋白家族的SSH (soybean Sec14 homolog group)亚家族。亚细胞定位结果表明, ScSEC14蛋白主要定位于细胞膜。实时荧光定量PCR分析发现, ScSEC14基因在甘蔗中组成型表达, 在蔗皮中的表达量最低, 蔗叶中的表达量最高, 约为蔗皮的4.9倍; 该基因在PEG、NaCl、CaCl2和水杨酸(SA)胁迫下的表达量均上调。因此, 甘蔗ScSEC14基因可能参与Ca 2+和SA介导的抗逆信号通路, 积极响应逆境胁迫, 尤其调节了干旱和高盐环境下的抗逆性。

关键词: 甘蔗, Sec14-like磷脂酰肌醇转运蛋白, ScSEC14, 干旱, 盐胁迫

Abstract:

Sec14-like phosphatidylinositol transfer proteins are present in all eukaryotic genomes and involved in a variety of biological activities, such as metabolism of inositol phosphate, membrane transportation, polar growth, signal transduction and stress responses. The responses of Sec14-like gene to drought and salt stresses have not been reported in sugarcane. In this study, a SEC14 gene sequence was obtained in the sugarcane transcription database infected by Sporisorium scitamineum, and the full length cDNA sequence of a sugarcane SEC14 gene was obtained by RT-PCR technology and named as ScSEC14 (GenBank accession number: MG571103). Bioinformatics analysis showed a full length of 1617 bp in ScSEC14 gene containing a complete open reading frame of 1008 bp and encoding 335 amino acid residues. ScSEC14 is an unstable hydrophilic protein with no signal peptide. The secondary structure of ScSEC14 protein is mostly α-helices, with a typical SEC14 domain and a CRAL_TRIO_N domain. Phylogenetic tree analysis showed that ScSEC14 belonged to SSH (soybean Sec14 homolog group) subfamily of Sec14-like protein family. Subcellular localization experiment showed that ScSEC14 protein was mainly localized in the plasma membrane. Real-time quantitative PCR analysis showed that ScSEC14 gene was constitutively expressed in sugarcane, with the lowest expression level in skin, and the highest in leaf, which was 4.9 times of that in skin. The expression of ScSEC14 gene was up-regulated under the stresses of PEG, NaCl, CaCl2 and salicylic acid (SA). We speculate that ScSEC14 plays an important role in response to drought and salt stresses, and may be involved in the stress response signaling pathway mediated by Ca 2+ and SA.

Key words: sugarcane, Sec14-like phosphatidylinositol transfer protein, ScSEC14, drought, salt stress

表1

实时荧光定量材料处理"

处理条件
Treatment condition
取样时间Sampling time (h)
取样点1 Site 1 取样点2 Site 2 取样点3 Site 3
5 mmol L-1 SA 3 6 12
25.0% PEG模拟干旱 25.0% PEG simulated drought 6 12 24
50 μmol L-1 CaCl2 3 6 12
250 mmol L-1 NaCl 6 12 24
500 mmol L-1 CuCl2 12 24 48
500 mmol L-1 CdCl2 12 24 48

表2

ScSEC14基因克隆与表达所用引物"

引物
Primer
引物序列
Sequence information (5'-3')
用途
Purpose
SEC14
F: AGGAAGCGCACAAGAACAGA 基因克隆
Gene cloning
R: GGGAGTACAAGTCTCCTTGCATA
qSEC14
F: CCACGAGTCACTTCCACACT 荧光定量Real-time-qPCR
R: TGGGACCAAGAGAGTCCTGA
CUL
F: TGCTGAATGTGTTGAGCAGC 内参基因
Reference genes
R: TTGTCGCGCTCCAAGTAGTC
CAC
F: ACAACGTCAGGCAAAGCAAA 内参基因
Reference genes
R: AGATCAACTCCACCTCTGCG
G-SEC14
F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGCCACCTCCGGAAGG 载体构建
Vector construction
R: GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGACCTTCGATCTGTATGCTG

图1

甘蔗ScSEC14基因的RT-PCR扩增 M: DNA marker, D2000 bp; 1:目的条带。"

图2

甘蔗ScSEC14基因的cDNA序列及其推导的氨基酸序列(*终止密码子) 方框部分为特异性引物在基因序列中的位置。"

图3

甘蔗ScSEC14蛋白氨基酸疏水性/亲水性预测"

表3

甘蔗ScSEC14蛋白二级结构预测分析"

二级结构类型
Secondary structure type
氨基酸残基数目
Amino acid residue number
百分比
Percentage (%)
α-螺旋Alpha-helix 145 43.28
延伸链Extended strand 52 15.52
无规则卷曲Random coil 138 41.19

图4

甘蔗、高粱、玉米、粟和水稻SEC14蛋白三级结构预测"

图5

甘蔗ScSEC14蛋白的保守结构域分析"

图6

ScSEC14 蛋白的氨基酸序列同源性分析和系统进化树分析 A: ScSEC14 蛋白与其他物种的SEC14 蛋白的氨基酸序列比对; B: ScSEC14 蛋白与其他物种SEC14 蛋白的系统进化树分析; C: ScSEC14 蛋白与其他物种SEC14 蛋白的结构域分析。"

图7

甘蔗ScSEC14蛋白在烟草叶片中的亚细胞定位 红色箭头代表细胞核; 白色箭头代表细胞膜; 蓝色箭头代表细胞质。"

图8

pEZY19-ScSEC14和pEZY19(+)表达产物的SDS-PAGE分析 1: marker; 2: 空菌诱导0 h; 3: 空菌诱导8 h; 4: 空载诱导0 h; 5: 空载诱导8 h; 6~12: 重组菌诱导0、1.5、1、2、4、6、8 h; 白色箭头代表被诱导的目标蛋白。"

图9

甘蔗ScSEC14基因在不同组织中的表达 误差线为每组处理的标准误差(N = 3)。"

图10

甘蔗ScSEC14基因在不同外源胁迫下的表达特性 误差线为每组处理的标准误差(N = 3)。"

[1] Ghosh R, Bankaitis V A . Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors, 2011,37:290-308
doi: 10.1002/biof.180 pmid: 21915936
[2] Muellerroeber B, Pical C . Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol, 2002,130:22-46
doi: 10.1104/pp.004770
[3] Balla T . Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 2013,93:1019-1137
doi: 10.1152/physrev.00028.2012
[4] Phillips S E, Vincent P, Rizzieri K E, Schaaf G, Bankaitis V A, Gaucher E A . The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol, 2006,41:21-49
doi: 10.1080/10409230500519573
[5] Aitken J F, van Heusden G P, Temkin M, Dowhan W . The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J Biol Chem, 1990,265:4711-4717
doi: 10.1016/0005-2728(90)90016-W pmid: 2407740
[6] Kearns M A, Monks D E, Fang M, Rivas M P, Courtney P D, Chen J, Prestwich G D, Theibert A B, Dewey R E, Bankaitis V A . Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J, 1998,17:4004-4017
doi: 10.1093/emboj/17.14.4004 pmid: 9670016
[7] Peterman T K, Ohol Y M, Mcreynolds L J, Luna E J . Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004,136:3080-3094
doi: 10.1104/pp.104.045369 pmid: 15466235
[8] Peterman T K, Sequeira A S, Samia J A, Lunde E E . Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini ( Cucurbita pepo). J Plant Physiol, 2006,163:1150-1158
doi: 10.1016/j.jplph.2006.01.009 pmid: 16542754
[9] Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A . A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005,168:801-812
doi: 10.1083/jcb.200412074 pmid: 2171805
[10] Routt S M, Bankaitis V A . Biological functions of phosphatidylinositol transfer proteins. Biochem Cell Biol, 2004,82:254-262
doi: 10.1139/o03-089 pmid: 15052341
[11] Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y . A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012,169:1017-1022
[12] Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y . SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014,9:e98150
[13] Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240
[14] 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平 . 普通小麦 TaSEC14p-5 基因的克隆及表达分析. 农业生物技术学报, 2016,24:1129-1137
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P . Cloning and expression analysis of TaSEC14p-5 gene from wheat( Triticum aestivum). J Agric Biotechnol, 2016,24:1129-1137 (in Chinese with English abstract)
[15] Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y . Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize( Zea may L.). Plant Cell Rep, 2016,35:1671-1686
doi: 10.1007/s00299-016-1980-4 pmid: 27061906
[16] Monks D E, Aghoram K, Courtney P D , De Wald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001,13:1205-1219
doi: 10.1105/tpc.13.5.1205
[17] 陈义强 . 甘蔗抗旱种质资源的筛选及斑茅杂种后代抗旱性分析 . 福建农林大学硕士学位论文, 福建福州, 2005
doi: 10.7666/d.y774985
Chen Y Q . Screening and analysis of the sugarcane drought resistant germplasm and the inte-rgeneric hybrids from crossing of Saccharum L. and E. arundinaceus Jeswiet. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2005 ( in Chinese with English abstract)
doi: 10.7666/d.y774985
[18] 黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯 . 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015,41:499-506
doi: 10.3724/SP.J.1006.2015.00499
Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K . Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015,41:499-506 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00499
[19] Gandonou B, Agbangla C, Ahanhanzo C, Errabii T, Idaomar M, Abrini J, Skalisenhaji N . In vitro culture techniques as a tool of sugarcane bud germination study under salt stress. Afr J Biotechnol, 2008,7:3680-3682
[20] Koehler P H, Moore P H, Jones C A, Cruz A D, Maretzki A . Response of drip-irrigated sugarcane to drought stress. Agron J, 1982,74:906-911
doi: 10.2134/agronj1982.00021962007400050018x
[21] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S . A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012,31:1801-1812
doi: 10.1007/s00299-012-1293-1
[22] Su Y C, Xu L P, Xue B T, Wu Q B, Guo J L, Wu L G, Que Y X . Molecular cloning and characterization of two pathogenesis- related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep, 2013,32:1503-1519
[23] Begcy K, Mariano E D, Gentile A, Lembke C G, Zingaretti S M, Souza G M, Menossi M . A novel stress induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One, 2012,7:e44697
doi: 10.1371/journal.pone.0044697 pmid: 3439409
[24] Chen Y, Ma J J, Zhang X , Y Yang Y T, Zhou D G, Yu Q, Que Y X, Xu L P, Guo J L. A novel non-specific lipid transfer protein gene from sugarcane ( NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech, 2016,19:1-9
doi: 10.1007/s12355-016-0431-4
[25] 苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄 . 甘蔗Ca 2+/H +反向运转体基因的克隆与表达分析 . 作物学报, 2016,42:1074-1082
doi: 10.3724/SP.J.1006.2016.01074
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X . Cloning and expression analysis of a Ca 2+/H + antiporter gene from sugarcane . Acta Agron Sin, 2016,42:1074-1082 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01074
[26] Huang J, Kim C M, Xuan Y H, Park S J, Hai L P, Je B I, Liu J M, Kim T H, Kim B K, Han C D . OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice. Plant Mol Biol, 2013,82:39-50
doi: 10.1007/s11103-013-0033-4 pmid: 23456248
[27] Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240
[28] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042
[29] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[30] 罗明武, 邓柳红 . 巴西橡胶树磷脂酰肌醇转移蛋白cDNA的克隆及其序列分析. 基因组学与应用生物学, 2010,29:164-169
doi: 10.3969/gab.029.000164
Luo M W, Deng L H . Cloning and sequence analysis of phosphatidylinositol transfer protein cDNA from Hevea brasilensis. Genomics Appl Biol, 2010,29:164-169 (in Chinese with English abstract)
doi: 10.3969/gab.029.000164
[31] Domain T L S . The lipid-binding SEC 14 domain. BBA-Mol Cell Biol L, 2007,1771:719-726
doi: 10.1016/S0926-860X(00)00425-7
[32] Huang J, Ghosh R, Bankaitis V A . Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016,1861:1352-1364
doi: 10.1016/j.bbalip.2016.03.027
[33] 莫萍丽 . 拟南芥两个在花中特异表达的Sec14-like磷脂酰肌醇转移蛋白的分子生物学研究 . 厦门大学博士学位论文, 福建厦门, 2006
doi: 10.7666/d.y1345372
Mo P L . Molecular biology of two Sec14-like phosphatidylinositol transfer proteins that specifically expressed in flowers of Arabidopsis thaliana. PhD Dissertation of Xiamen University, Xiamen, Fujian, China, 2006 ( in Chinese with English abstract)
doi: 10.7666/d.y1345372
[34] 刘岩, 彭学贤 . 植物抗渗透胁迫基因工程研究进展. 中国生物工程杂志, 1997,17(2):30-37
Liu Y, Peng X X . Advances in genetic engineering of plant osmotic stress resistance. China Biotechnol, 1997,17(2):30-37 (in Chinese)
[35] Kang G, Li G, Guo T . Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant, 2014,36:2287-2297
doi: 10.1007/s11738-014-1603-z
[36] Berridge M J, Irvine R F . Inositol phosphates and cell signalling. Nature, 1989,341:197-205
doi: 10.1038/341197a0 pmid: 2550825
[37] 蔡囊, 李吉跃, 李永杰 . 土壤重金属污染下植物效应研究进展. 林业与环境科学, 2009,25(2):71-77
Cai N, Li J Y, Li Y J . Advances on the effect of heavy metal containated soils on plant. For Environ Sci, 2009,25(2):71-77 (in Chinese with English abstract)
[38] Hsuan J , Cockcroft S. The PITP family of phosphatidylinositol transfer proteins. Genome Biol, 2001, 2: REVIEWS3011
doi: 10.1186/gb-2001-2-9-reviews3011 pmid: 138965
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[8] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[9] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[10] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[11] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[14] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[15] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!