作物学报 ›› 2018, Vol. 44 ›› Issue (6): 836-843.doi: 10.3724/SP.J.1006.2018.00836
李玉玲1,蒋正宁2,胡文静2,李东升2,程婧晔3,裔新1,程晓明2,吴荣林2,程顺和1,2,*()
Yu-Ling LI1,Zheng-Ning JIANG2,Wen-Jing HU2,Dong-Sheng LI2,Jing-Ye CHENG3,Xin YI1,Xiao-Ming CHENG2,Rong-Lin WU2,Shun-He CHENG1,2,*()
摘要:
由Puccinia triticina引起的叶锈病是小麦主要病害之一, 引进种质C615具有叶锈病成株期抗性, 但其抗病性遗传机制尚不清楚。本研究以抗病亲本C615与高感叶锈病亲本宁麦18构建的F2:7代重组自交系群体为材料, 利用337对多态性SSR标记构建遗传连锁图谱, 结合2016、2017连续两年的叶锈病鉴定结果进行复合区间作图, 结果在1BL、2DS、3BS、4DL和6BS染色体上共发现了5个抗性QTL, 暂命名为QLr.njau-1BL、QLr.njau-2DS、QLr.njau-3BS、QLr.njau-4DL和QLr.njau-6BS。其中, QLr.njau-1BL、QLr.njau-3BS和QLr.njau-4DL在两年均被检测到, 分别解释10.1%~15.7%、10.9%~13.5%和8.2%~9.0%的表型变异; 另2个QTL只在一年被检测到, 解释6.2%和9.2%的表型变异。除QLr.njau-2DS外的4个抗性QTL均来源于抗病亲本C615。QLr.njau-1BL和QLr.njau-4DL分别与已报道的慢病性基因Lr46、Lr67在同一区域, QLr.njau-3B可能为一个新的抗叶锈病QTL。此外, 本研究在C615/扬麦13 (轮回亲本)BC4F5回交群体中选出了15个农艺性状优良且抗叶锈病的株系, 利用与C615所含抗性QTL紧密连锁的7个SSR标记对其进行基因型检测, 结果显示所有这15个株系均含有来自C615的抗性QTL, 且有3个株系聚合了全部抗性位点, 表明C615可作为抗源亲本用于高产、抗病育种。本研究结果将为分子标记选育抗叶锈品种提供材料和技术支撑。
[1] |
Khan M H, Bukhari A, Dar Z A, Rizvi S M . Status and strategies in breeding for rust resistance in wheat. Agric Sci, 2013,4:292-301
doi: 10.4236/as.2013.46042 |
[2] |
Singh D, Mohler V, Park R F . Discovery, characterization and mapping of wheat leaf rust resistance gene Lr71. Euphytica, 2013,190:131-136
doi: 10.1007/s10681-012-0786-x |
[3] |
Zhang P P, Yin G H, Zhou Y, Qi A Y, Gao F M, Xia X C, He Z H, Li Z F, Liu D Q , QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers. Front Plant Sci, 2017,8:793-805
doi: 10.3389/fpls.2017.00793 |
[4] | Do Vale F X R, Parlevliet J E, Zambolim L . Concepts in plant disease resistance. Trop Plant Pathol, 2001,26:577-589 |
[5] |
Spielmeyer W, Mcintosh R J, Lagudah E . Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet, 2005,111:731-735
doi: 10.1007/s00122-005-2058-9 pmid: 15965649 |
[6] |
Bariana H S, Hayden M J, Ahmed N U , BellJ A, Sharp P J, McIntosh R A. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res, 2001,52:1247-1255
doi: 10.1071/ar01040 |
[7] |
Suenaga K, Singh R P, Huertaespino J, William H M . Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 2003,93:881-890
doi: 10.1094/PHYTO.2003.93.7.881 pmid: 18943170 |
[8] | Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B . Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet, 2004,108:477-484 |
[9] |
Schnurbusch T, Bossolini E, Messmer M, Keller B . Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology, 2004,94:1036-1041
doi: 10.1094/PHYTO.2004.94.10.1036 pmid: 18943790 |
[10] | Zhang P P, Zhang Y Q, Han B, Gao P, Liu L, Xing L, Li Z F, Liu D Q . QTL mapping of adult-plant resistance genes to leaf rust and stripe rust in CIMMYT wheat Kingbird and PBW343. J Henan Agric Sci, 2014,54:1907-1925 |
[11] |
William M, Singh R P, Huerta-Espino J, Islas S O, Hoisington D . Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93:153-159
doi: 10.1094/PHYTO.2003.93.2.153 pmid: 18943129 |
[12] | Singh R P, Mujeebkazi A, Huertaespino J . Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998,88:890-894 |
[13] |
Lan C, Basnet B R, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Ren Y, Randhawa M S. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theor Appl Genet, 2017,130:609-619
doi: 10.1007/s00122-016-2839-3 pmid: 28004134 |
[14] |
Herrera-Foessel S A, Lagudah E S, Huertaespino J, Hayden M J, Bariana H S . New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011,122:239-249
doi: 10.1007/s00122-010-1439-x pmid: 20848270 |
[15] |
Hiebert C W, Thomas J B , McCallum B D, Humphreys D G, De Pauw R M, Hayden M J, Mago R, Schnippenkoetter W, Spielmeyer W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust ( Lr67). Theor Appl Genet, 2010,121:1083-1091
doi: 10.1007/s00122-010-1373-y pmid: 20552325 |
[16] |
Herrera-Foessel S A, Singh R P, Huerta-Espino J, Rosewarne G M, Periyannan S K, Viccars L, Calvo-Salazar V, Lan C, Lagudah E S . Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet, 2012,124:1475-1486
doi: 10.1007/s00122-012-1802-1 pmid: 22297565 |
[17] |
Li Z F, Lan C X, He Z H, Singh R P, Rosewarne M R, Chen X M, Xia X C . Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014,54:1907-1925
doi: 10.2135/cropsci2014.02.0162 |
[18] |
Rosewarne G M, Singh R P, Huerta-Espino J, Rebetzke G J . Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet, 2008,116:1027-1034
doi: 10.1007/s00122-008-0736-0 pmid: 18335201 |
[19] |
Crossa J, Burgueño J, Dreisigacker S, Vargas M , Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historicalbread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007,177:1889-1913
doi: 10.1534/genetics.107.078659 pmid: 17947425 |
[20] |
Ren Y, Li Z, He Z H , W Ling, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012,125:1253-1262
doi: 10.1007/s00122-012-1910-y pmid: 22806327 |
[21] |
Zhou H X, Xia X C, He Z H, LI X, Wang C F, Li Z F, Liu D Q . Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang 977671. Theor Appl Genet, 2013,126:2141-2147
doi: 10.1007/s00122-013-2124-7 pmid: 23689746 |
[22] | 彭红, 吕国强, 王江蓉 . 河南省2015 年小麦主要病害发生特点及原因分析. 中国植保导刊, 2016,36(4):29-33 |
Peng H, Lyu G Q, Wang J R . Analysis on the characteristics and causes of main diseases of wheat in Henan province in 2015. China Plant Prot, 2016,36(4):29-33 (in Chinese) | |
[23] | Peterson R F, Campbell A B, Hannah A E . A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948,26:496-500 |
[24] | 张晓祥, 王玲, 寿路路 . 一种快速提取小麦基因组DNA的改良CTAB方法. 中国农学通报, 2012,28(36):46-49 |
Zhang X X, Wang L, Shou L L . A rapid modified CTAB method of extracting genomic DNA from wheat leaf. Chin Agric Sci Bull, 2012,28(36):46-49 (in Chinese with English abstract) | |
[25] |
张利军, 李在峰 , Morten L, 夏先春, 刘大群, 杨文香, 罗家传, 王海燕. CIMMYT小麦品种Saar的叶锈成株抗性QTL分析. 中国农业科学, 2009,42:388-397
doi: 10.3864/j.issn.0578-1752.2009.02.002 |
Zhang L J, Li Z F, Morten L, Xia X C, Liu D Q, Yang W X, Luo J C, Wang H Y . QTL Mapping for adult-plant resistance to leaf rust in CIMMYT wheat cultivar Saar. Sci Agric Sin, 2009,42:388-397 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.02.002 |
|
[26] |
Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5 |
[27] |
William H M, Singh R P, Huertaespino J, Palacios G, Suenaga K . Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome, 2006,49:977-990
doi: 10.1139/g06-052 |
[28] |
Rosewarne G M, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Theor Appl Genet, 2012,124:1283-1294
doi: 10.1007/s00122-012-1786-x pmid: 22274764 |
[29] |
Messmer M M, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B . Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet, 2000,100:419-431
doi: 10.1007/s001220050055 |
[30] | Singh R P, Mcintosh R A . Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum: I. Genetic and linkage studies. Genome, 2011,26:723-735 |
[31] |
Calvo-Salazar, SinghR P, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz, Sandoval-Islas S, Vargas-Hernandez M, German S, Silva P, Basnet B R, Lan C X, Herrera-Foessel S A. Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Dis, 2015,99:1153-1159
doi: 10.1094/PDIS-07-14-0718-RE |
[32] | Singh R P, Huerta-Espino J, William H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish J Agric For, 2005,29:121-127 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|