欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 836-843.doi: 10.3724/SP.J.1006.2018.00836

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

CIMMYT小麦种质C615抗叶锈病QTL分析

李玉玲1,蒋正宁2,胡文静2,李东升2,程婧晔3,裔新1,程晓明2,吴荣林2,程顺和1,2,*()   

  1. 1 南京农业大学, 江苏南京 210095
    2 江苏里下河地区农业科学研究所 / 国家小麦改良中心扬州分中心, 江苏扬州 225007
    3 扬州大学农学院, 江苏扬州 225009
  • 收稿日期:2017-09-26 接受日期:2018-03-25 出版日期:2018-06-12 网络出版日期:2018-04-08
  • 通讯作者: 程顺和
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-03-03B);本研究由国家现代农业产业技术体系建设专项(CARS-3-2-11);江苏省农业科技自主创新资金项目(CX(14)5080);江苏省自然科学基金项目资助(BK20171279)

Mapping QTLs against Leaf Rust in CIMMYT Wheat C615

Yu-Ling LI1,Zheng-Ning JIANG2,Wen-Jing HU2,Dong-Sheng LI2,Jing-Ye CHENG3,Xin YI1,Xiao-Ming CHENG2,Rong-Lin WU2,Shun-He CHENG1,2,*()   

  1. 1 Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2 Lixiahe Institute of Agriculture Sciences of Jiangsu Province / Branch of National Wheat Improvement Center, Yangzhou 225007, Jiangsu, China
    3 Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2017-09-26 Accepted:2018-03-25 Published:2018-06-12 Published online:2018-04-08
  • Contact: Shun-He CHENG
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-03-03B);This study was supported by the China Agriculture Research System(CARS-3-2-11);the Independent Innovation Fund for Agricultural Science and Technology in Jiangsu Province(CX(14)5080);the Natural Science Foundation of Jiangsu Province(BK20171279)

摘要:

Puccinia triticina引起的叶锈病是小麦主要病害之一, 引进种质C615具有叶锈病成株期抗性, 但其抗病性遗传机制尚不清楚。本研究以抗病亲本C615与高感叶锈病亲本宁麦18构建的F2:7代重组自交系群体为材料, 利用337对多态性SSR标记构建遗传连锁图谱, 结合2016、2017连续两年的叶锈病鉴定结果进行复合区间作图, 结果在1BL、2DS、3BS、4DL和6BS染色体上共发现了5个抗性QTL, 暂命名为QLr.njau-1BLQLr.njau-2DSQLr.njau-3BSQLr.njau-4DLQLr.njau-6BS。其中, QLr.njau-1BLQLr.njau-3BSQLr.njau-4DL在两年均被检测到, 分别解释10.1%~15.7%、10.9%~13.5%和8.2%~9.0%的表型变异; 另2个QTL只在一年被检测到, 解释6.2%和9.2%的表型变异。除QLr.njau-2DS外的4个抗性QTL均来源于抗病亲本C615。QLr.njau-1BLQLr.njau-4DL分别与已报道的慢病性基因Lr46Lr67在同一区域, QLr.njau-3B可能为一个新的抗叶锈病QTL。此外, 本研究在C615/扬麦13 (轮回亲本)BC4F5回交群体中选出了15个农艺性状优良且抗叶锈病的株系, 利用与C615所含抗性QTL紧密连锁的7个SSR标记对其进行基因型检测, 结果显示所有这15个株系均含有来自C615的抗性QTL, 且有3个株系聚合了全部抗性位点, 表明C615可作为抗源亲本用于高产、抗病育种。本研究结果将为分子标记选育抗叶锈品种提供材料和技术支撑。

关键词: 小麦, 叶锈病, QTL, 标记辅助选择育种

Abstract:

Leaf rust, caused by Puccinia triticina, is an important wheat disease. The introduced wheat line C615 shows adult resistance to leaf rust, but its mechanism is not clear. In this study, the quantitative trait loci (QTLs) for leaf rust resistance were identified and located in a linkage map constructed with 337 SSR markers using a recombinant inbred line (RIL) population (112 lines of the F2:7 generation) derived from CIMMYT wheat C615 (resistant) and Ningmai 18 (highly susceptible). Final disease severity (FDS) of leaf rust was evaluated in 2016 and 2017. Five QTLs were detected on chromosomes 1BL, 2DS, 3BS, 4DL, and 6BS, designated QLr.njau-1BL, QLr.njau-2DS, QLr.njau-3BS, QLr.njau-4DL, and QLr.njau-6BS, respectively. All the resistance alleles were contributed by the resistant parent C615, except for QLr.njau-2DS. Three QTLs, QLr.njau-1BL, QLr.njau-3BS, and QLr.njau-4DL, were detected in both years, which explained phenotypic variance by 10.1%-15.7%, 10.9%-13.5%, and 8.2%-9.0%, respectively. The remaining two QTLs were detected in one year with smaller contributions (6.2% and 9.2%, respectively). QLr.njau-1BL and QLr.njau-4DL were located in the same regions of the known resistance genes Lr46 and Lr67, respectively. QLr.njau-3BS in the marker interval Xbarc102-Xwmc623 is probably a novel QTL for leaf rust resistance. Fifteen BC4F5 lines derived from the cross of C615/Yangmai 13 (recurrent parent) were genotyped for leaf rust resistance using seven SSR markers closely linked to the QTLs from C615. All the 15 lines had QTLs donated by C615 and three of them pyramided four QTLs, indicating that C615 can serve as an elite donor parent in wheat breeding aiming at high-yield and high-resistance to leaf rust. These results provide a basis of marker-assisted selection and providing breeding materials.

Key words: wheat (Triticum aestivum L.), leaf rust, QTL mapping, marker-assisted selection

图1

宁麦18 (A)、扬麦13 (B)和C615 (C)成株期叶锈病抗性表现"

图2

RIL群体2016年和2017年叶锈病最终严重度频次分布 亲本C615和宁麦18的最终病害严重度分别为5%和100%。"

表1

亲本及其RIL群体叶锈病最终严重度表现"

年份
Year
亲本 Parent RIL群体 RIL population
C615
(%)
宁麦18
Ningmai 18 (%)
范围
Range (%)
均值
Mean (%)
标准差
SD (%)
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2016 5 100 5-100 55.41 22.67 38.52 -0.61 -0.53
2017 5 100 3-100 46.72 22.41 51.05 0.11 -0.72

表2

叶锈病抗性QTL定位结果"

位点
QTL
标记区间
Marker interval
年份
Year
LOD 加性效应
Additive effect
贡献率
Phenotypic variance explained (%)
QLr.njau-1BL Xwmc728-Xbarc80 2016 4.98 -8.55 15.7
Xgwm140-Xbarc80 2017 4.34 -9.62 10.1
QLr.njau-2DS Xgwm296-GPW4080 2017 2.54 6.58 6.2
QLr.njau-3BS Xbarc102-Xwmc623 2016 4.92 -7.95 13.5
2017 3.95 -7.78 10.9
QLr.njau-4DL Xgwm165-Xcfd71 2016 2.93 -5.68 9.0
2017 3.52 -6.87 8.2
QLr.njau-6BS Xmag1424-Xmag1200.1 2016 4.18 -5.30 9.2

图3

C615/宁麦18 RIL群体中检测到的叶锈病抗性QTL在染色体上的分布"

表3

C615/宁麦18 RIL群体中聚合不同稳定QTL家系的抗性效应"

QTL组成
QTL composition
家系数
Number of lines
最终严重度 Final disease severity (%)
2016 2017 平均 Mean
None 14 85.6 a 78.6 a 82.1 a
QLr.njau-4DL 19 79.8 a 70.4 a 75.1 a
QLr.njau-3BS 10 65.7 b 51.0 b 58.4 b
QLr.njau-1BL 11 62.3 bc 50.6 b 56.5 bc
QLr.njau-1BL+QLr.njau-4DL 15 50.0 cd 45.0 b 47.5 bc
QLr.njau-3BS+QLr.njau-4DL 16 42.2 d 40.0 bc 41.1 cd
QLr.njau-1BL+QLr.njau-3BS 18 36.5 d 26.9 c 31.7 d
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL 9 21.1 e 11.1 d 16.1 e

图4

含有和不含QLr.njau-3BS家系的最终病害严重度比较 最终病害严重度为两年平均值。RIL群体中含有和不含QLr.njau-3BS家系数分别是53和59。"

表4

15个回交株系的抗性QTL组成及叶锈病抗性"

抗性QTL组成
Composition of resistance QTL
轮回亲本或株系
Recurrent parent or line
最终病害严重度 Final disease severity (%)
2016 2017
None 扬麦13 Yangmai 13 100 100
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL+QLr.njau-6BS BL-1 5.0 5.0
BL-2 10.0 5.0
BL-3 10.0 8.3
QLr.njau-1BL+QLr.njau-3BS+QLr.njau-4DL BL-4 10.0 8.3
BL-5 10.0 10.0
BL-6 15.0 10.0
QLr.njau-1BL+ QLr.njau-4DL+QLr.njau-6BS BL-7 15.0 15.0
QLr.njau-1BL+QLr.njau-3BS BL-8 10.0 20.0
BL-9 15.0 15.0
BL-10 20.0 20.0
QLr.njau-1BL + QLr.njau-6BS BL-11 20.0 25.0
QLr.njau-3BS+QLr.njau-4DL BL-12 25.0 20.0
BL-13 25.0 25.0
QLr.njau-1BL + QLr.njau-6BS BL-14 25.0 25.0
QLr.njau-1BL BL-15 31.7 25.0
[1] Khan M H, Bukhari A, Dar Z A, Rizvi S M . Status and strategies in breeding for rust resistance in wheat. Agric Sci, 2013,4:292-301
doi: 10.4236/as.2013.46042
[2] Singh D, Mohler V, Park R F . Discovery, characterization and mapping of wheat leaf rust resistance gene Lr71. Euphytica, 2013,190:131-136
doi: 10.1007/s10681-012-0786-x
[3] Zhang P P, Yin G H, Zhou Y, Qi A Y, Gao F M, Xia X C, He Z H, Li Z F, Liu D Q , QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers. Front Plant Sci, 2017,8:793-805
doi: 10.3389/fpls.2017.00793
[4] Do Vale F X R, Parlevliet J E, Zambolim L . Concepts in plant disease resistance. Trop Plant Pathol, 2001,26:577-589
[5] Spielmeyer W, Mcintosh R J, Lagudah E . Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet, 2005,111:731-735
doi: 10.1007/s00122-005-2058-9 pmid: 15965649
[6] Bariana H S, Hayden M J, Ahmed N U , BellJ A, Sharp P J, McIntosh R A. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res, 2001,52:1247-1255
doi: 10.1071/ar01040
[7] Suenaga K, Singh R P, Huertaespino J, William H M . Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 2003,93:881-890
doi: 10.1094/PHYTO.2003.93.7.881 pmid: 18943170
[8] Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B . Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet, 2004,108:477-484
[9] Schnurbusch T, Bossolini E, Messmer M, Keller B . Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology, 2004,94:1036-1041
doi: 10.1094/PHYTO.2004.94.10.1036 pmid: 18943790
[10] Zhang P P, Zhang Y Q, Han B, Gao P, Liu L, Xing L, Li Z F, Liu D Q . QTL mapping of adult-plant resistance genes to leaf rust and stripe rust in CIMMYT wheat Kingbird and PBW343. J Henan Agric Sci, 2014,54:1907-1925
[11] William M, Singh R P, Huerta-Espino J, Islas S O, Hoisington D . Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93:153-159
doi: 10.1094/PHYTO.2003.93.2.153 pmid: 18943129
[12] Singh R P, Mujeebkazi A, Huertaespino J . Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998,88:890-894
[13] Lan C, Basnet B R, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Ren Y, Randhawa M S. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theor Appl Genet, 2017,130:609-619
doi: 10.1007/s00122-016-2839-3 pmid: 28004134
[14] Herrera-Foessel S A, Lagudah E S, Huertaespino J, Hayden M J, Bariana H S . New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011,122:239-249
doi: 10.1007/s00122-010-1439-x pmid: 20848270
[15] Hiebert C W, Thomas J B , McCallum B D, Humphreys D G, De Pauw R M, Hayden M J, Mago R, Schnippenkoetter W, Spielmeyer W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust ( Lr67). Theor Appl Genet, 2010,121:1083-1091
doi: 10.1007/s00122-010-1373-y pmid: 20552325
[16] Herrera-Foessel S A, Singh R P, Huerta-Espino J, Rosewarne G M, Periyannan S K, Viccars L, Calvo-Salazar V, Lan C, Lagudah E S . Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet, 2012,124:1475-1486
doi: 10.1007/s00122-012-1802-1 pmid: 22297565
[17] Li Z F, Lan C X, He Z H, Singh R P, Rosewarne M R, Chen X M, Xia X C . Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014,54:1907-1925
doi: 10.2135/cropsci2014.02.0162
[18] Rosewarne G M, Singh R P, Huerta-Espino J, Rebetzke G J . Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet, 2008,116:1027-1034
doi: 10.1007/s00122-008-0736-0 pmid: 18335201
[19] Crossa J, Burgueño J, Dreisigacker S, Vargas M , Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historicalbread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007,177:1889-1913
doi: 10.1534/genetics.107.078659 pmid: 17947425
[20] Ren Y, Li Z, He Z H , W Ling, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012,125:1253-1262
doi: 10.1007/s00122-012-1910-y pmid: 22806327
[21] Zhou H X, Xia X C, He Z H, LI X, Wang C F, Li Z F, Liu D Q . Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang 977671. Theor Appl Genet, 2013,126:2141-2147
doi: 10.1007/s00122-013-2124-7 pmid: 23689746
[22] 彭红, 吕国强, 王江蓉 . 河南省2015 年小麦主要病害发生特点及原因分析. 中国植保导刊, 2016,36(4):29-33
Peng H, Lyu G Q, Wang J R . Analysis on the characteristics and causes of main diseases of wheat in Henan province in 2015. China Plant Prot, 2016,36(4):29-33 (in Chinese)
[23] Peterson R F, Campbell A B, Hannah A E . A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948,26:496-500
[24] 张晓祥, 王玲, 寿路路 . 一种快速提取小麦基因组DNA的改良CTAB方法. 中国农学通报, 2012,28(36):46-49
Zhang X X, Wang L, Shou L L . A rapid modified CTAB method of extracting genomic DNA from wheat leaf. Chin Agric Sci Bull, 2012,28(36):46-49 (in Chinese with English abstract)
[25] 张利军, 李在峰 , Morten L, 夏先春, 刘大群, 杨文香, 罗家传, 王海燕. CIMMYT小麦品种Saar的叶锈成株抗性QTL分析. 中国农业科学, 2009,42:388-397
doi: 10.3864/j.issn.0578-1752.2009.02.002
Zhang L J, Li Z F, Morten L, Xia X C, Liu D Q, Yang W X, Luo J C, Wang H Y . QTL Mapping for adult-plant resistance to leaf rust in CIMMYT wheat cultivar Saar. Sci Agric Sin, 2009,42:388-397 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.02.002
[26] Li H, Ribaut J M, Li Z, Wang J . Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008,116:243-260
doi: 10.1007/s00122-007-0663-5
[27] William H M, Singh R P, Huertaespino J, Palacios G, Suenaga K . Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome, 2006,49:977-990
doi: 10.1139/g06-052
[28] Rosewarne G M, Singh R P, Huerta-Espino J , Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Theor Appl Genet, 2012,124:1283-1294
doi: 10.1007/s00122-012-1786-x pmid: 22274764
[29] Messmer M M, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B . Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet, 2000,100:419-431
doi: 10.1007/s001220050055
[30] Singh R P, Mcintosh R A . Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum: I. Genetic and linkage studies. Genome, 2011,26:723-735
[31] Calvo-Salazar, SinghR P, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz, Sandoval-Islas S, Vargas-Hernandez M, German S, Silva P, Basnet B R, Lan C X, Herrera-Foessel S A. Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Dis, 2015,99:1153-1159
doi: 10.1094/PDIS-07-14-0718-RE
[32] Singh R P, Huerta-Espino J, William H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish J Agric For, 2005,29:121-127
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!