欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 844-851.doi: 10.3724/SP.J.1006.2018.00844

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建

黄忠明1,周延彪2,3,*(),唐晓丹3,赵新辉3,周在为3,符星学3,王凯4,史江伟3,李艳锋4,符辰建2,3,杨远柱1,2,3,4,*()   

  1. 1 湖南农业大学农学院, 湖南长沙410128
    2 袁隆平农业高科技股份有限公司 / 抗病虫水稻育种湖南省工程实验室, 湖南长沙410001
    3 湖南隆平高科种业科学研究院有限公司, 湖南长沙 410119
    4 湖南师范大学生命科学学院, 湖南长沙410081
  • 收稿日期:2017-10-25 接受日期:2018-03-26 出版日期:2018-06-12 网络出版日期:2018-04-08
  • 通讯作者: 周延彪,杨远柱
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项(2016ZX08001-004);湖南省重点研发计划项目资助(2016JC2026)

Construction of tms5 Mutants in Rice Based on CRISPR/Cas9 Technology

Zhong-Ming HUANG1,Yan-Biao ZHOU2,3,*(),Xiao-Dan TANG3,Xin-Hui ZHAO3,Zai-Wei ZHOU3,Xing-Xue FU3,Kai WANG4,Jiang-Wei SHI3,Yan-Feng LI4,Chen-Jian FU2,3,Yuan-Zhu YANG1,2,3,4,*()   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2 Yuan Longping High-Tech Agriculture Co. Ltd., Hunan / Hunan Engineering Laboratory for Disease and Pest Resistance Rice Breeding, Changsha, 410001, Hunan, China
    3 Hunan Longping High-Tech Seeds Science Academy Co. Ltd., Changsha 410119, Hunan, China
    4 College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
  • Received:2017-10-25 Accepted:2018-03-26 Published:2018-06-12 Published online:2018-04-08
  • Contact: Yan-Biao ZHOU,Yuan-Zhu YANG
  • Supported by:
    This study was supported by the Major Project of China on New Varieties of GMO Cultivation(2016ZX08001-004);the Key Research Program of Hunan Province(2016JC2026)

摘要:

为创新优良温敏不育系, 促进两系杂交稻育种的发展, 我们以水稻温敏不育基因TMS5为编辑对象, 设计了由水稻U3启动子驱动、长20 bp的guide RNA (gRNA)靶点以靶向编辑 TMS5 基因的第1个外显子, 将靶点与表达载体pCAMBIA1301连接, 再用农杆菌介导法获得水稻转基因株系。提取T0代转基因株系的基因组DNA, 并对TMS5编辑位点附近的DNA片段进行PCR检测及测序分析。结果表明, T0代植株的突变率为63.89%, 其中纯合缺失突变率为34.78%。对T1代纯合缺失突变体的不育起点温度和农艺性状调查分析结果表明, 28℃是tms5突变体花粉育性的转换温度。大田试验结果表明, 与野生型相比, tms5突变体的结实率和单株重均显著降低。粳稻tms5突变体的获得为培育粳稻不育系奠定了材料基础。

关键词: 水稻, 基因编辑, CRISPR/Cas9, TMS5, 温敏不育

Abstract:

In order to create excellent temperature sensitive sterile line and promote the development of two line hybrid rice breeding. a 20 bp guide RNA (gRNA) was targeted to the first exon of TMS5, a thermo-sensitive genic male sterile gene as the editable object in present study, and driven by the rice U3 promoter. The target site of gRNA was ligated into the vector pCAMBIA1301, and its transgenic lines were obtained via Agrobacterium-mediated transformation. The genomic DNA of T0 transgenic lines was then extracted, and the TMS5 locus was detected by PCR and sequenced. The mutagenesis frequency for TMS5 was 63.89%, of which the frequency of homozygous deletion mutation was 34.78%. Furthermore, the fertility transition temperature and agronomic traits of T1 homozygous deletion mutants were investigated, showing that the fertility transition temperature of tms5 mutants was 28°C. Both seed setting rate and grain yields in tms5 mutants were significantly decreased compared with those in wild-type plants in paddy field condition. Together, the successful construction of tms5 mutants lays a material foundation for breeding the thermo-sensitive male sterile line of japonica rice.

Key words: rice, genome editing, CRISPR/Cas9, TMS5, thermo-sensitive genic male sterile

图1

TMS5靶点位置 红色的字母为靶点序列; 蓝色的字母为PAM序列。"

表1

本研究所用的引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
Target-1F TGGCGAACAGCGGCAAGTCATCGC
Target -1R AAACGCGATGACTTGCCGCTGTTC
M13F GTAAAACGACGGCCAG
GUS-JC-F CGTCCGTCCTGTAGAAACCC
GUS-JC-R GTGCGGATTCACCACTTGC
TMS5-CX-F TCCAACGCATAGCAGTAGTCG
TMS5-CX-R TGCCATCGTATCTCCGGTAAA

图2

CRISPR/Cas9-TMS5载体构建示意图 A: 18T-Cas9-TMS5-gRNA重组载体结构示意图; B: pCAMBIA1301载体的T-DNA片段; C: pCAMBIA1301-Cas9-TMS5-gRNA重组载体结构示意图。LB: 左边界; RB: 右边界。"

图3

酶切和PCR鉴定pCAMBIA1301-Cas9-TMS5-gRNA载体 A: Kpn I和Hind III酶切鉴定pCAMBIA1301-Cas9-TMS5-gRNA载体。箭头所示为CRISPR/Cas9系统元件的片段; B: 利用GUS-JC-F和GUS-JC-R引物PCR鉴定农杆菌中的pCAMBIA1301-Cas9-TMS5-gRNA载体。M: DL2000; 1: 18T-Cas9-TMS5-gRNA; 2: pCAMBIA1301; 3: pCAMBIA1301-Cas9-TMS5-gRNA。"

附图1

靶位点突变序列分析 红色的字母为靶点序列; 蓝色的字母为PAM序列; 绿色的字母为插入的碱基; +表示插入; WT表示野生型; Ho表示纯合突变; He表示杂合突变。"

图4

转基因植株的鉴定 A: PCR检测阳性转基因植株; B: GUS组织化学染色检测阳性转基因植株。M: DL2000; +: 阳性对照; 1-18: 转基因植株。"

图5

T0代转基因植株TMS5纯合突变类型和频率 A: 纯合突变类型序列比对; B: 纯合突变类型不同碱基插入的频率。红色字母为靶点序列; 蓝色字母为PAM序列; 绿色的字母为插入的碱基。"

图6

野生型和tms5突变体在不同温度处理条件下的花粉育性和结实率 数据表示平均值±方差。**表示tms5突变体与WT之间存在显著差异(P < 0.01)。"

表2

野生型(WT)和tms5突变体的农艺性状"

株系
Line
株高
Plant height
(cm)
千粒重
1000-grain weight
(g)
有效穗
Panicle number
per plant
结实率
Seed setting rate
(%)
单株产量
Grain yield per plant
(g)
WT 78.96±3.56 20.82±0.97 9.3±1.87 72.21±3.57 17.30±1.09
tms5 78.57±3.87 21.20±0.88 9.85±1.79 61.60±3.43** 15.22±1.05**
[1] 周海, 周明, 杨远柱, 曹晓风, 庄楚雄 . RNase ZS1加工UbL40 mRNA控制水稻温敏雄性核不育. 遗传, 2014,36:1274
Zhou H, Zhou M, Yang Y Z, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice . Hereditas( Beijing), 2014,36:1274 (in Chinese)
[2] 袁隆平 . 我国两系法杂交水稻研究的形势、任务和发展前景. 农业现代化研究, 1997,18(1):1-3
Yuan L P . Current status and developing prospects in two-line hybrid rice research in China. Res Agric Modernization, 1997,18(1):1-3 (in Chinese with English abstract)
[3] Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014,5:4884
doi: 10.1038/ncomms5884 pmid: 25208476
[4] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V . Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015,32:76-84
doi: 10.1016/j.copbio.2014.11.007
[5] Baltes N J, Voytas D F . Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015,33:120-131
doi: 10.1016/j.tibtech.2014.11.008
[6] 瞿礼嘉, 郭冬姝, 张金喆, 秦跟基 . CRISPR/Cas系统在植物基因组编辑中的应用. 生命科学, 2015, ( 1):64-70
Qu L J, Guo D S, Zhang J Z, Qin G J . The application of CRISPR/Cas system in plant genome editing. Chin Bull Life Sci, 2015, ( 1):64-70 (in Chinese with English abstract)
[7] Wiedenheft B, Sternberg S H, Doudna J A . RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338
doi: 10.1038/nature10886
[8] Symington L S, Gautier J . Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011,45:247-271
doi: 10.1146/annurev-genet-110410-132435
[9] Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X , X J J, Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688
doi: 10.1038/nbt.2650 pmid: 23929338
[10] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232
doi: 10.1038/nbt.2501 pmid: 23360964
[11] Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X . Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:16139
doi: 10.1038/nplants.2016.139 pmid: 27618611
[12] Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q . Generation of targeted point mutations in rice by a modified CRISPR/CAS9 system. Mol Plant, 2017,10:526-529
doi: 10.1016/j.molp.2016.12.001 pmid: 27940306
[13] Lu Y, Zhu J K . Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant, 2017,10:523-525
doi: 10.1016/j.molp.2016.11.013 pmid: 27932049
[14] Xie K, Zhang J, Yang Y . Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant, 2014,7:923-926
doi: 10.1093/mp/ssu009 pmid: 24482433
[15] Lin J Z, Zhou B, Yang Y Z, Mei J, Zhao X Y, Guo X H, Huang X Q, Tang D Y, Liu X M . Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep, 2009,28:1065-1074
doi: 10.1007/s00299-009-0706-2 pmid: 19455339
[16] Zhang H, Xu C X, He Y, Zong J, Yang X J, Si H M, Sun Z X, Hu J P, Liang W Q, Zhang D B . Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci USA, 2013,110:76-81
doi: 10.1073/pnas.1213041110
[17] Zhou Y B, Liu H, Zhou X C, Yan Y Z, Du C Q, Li Y X, Liu D R, Zhang C S, Deng X L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M . Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed, 2014,34:335-349
[18] Liu W, Xie X, Ma X, Li J, Chen J, Liu Y G . DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant, 2015,8:1431-1433
doi: 10.1016/j.molp.2015.05.009
[19] Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E D, Jiang D G, Zhao B R, Zhuang C X . Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:37395
doi: 10.1038/srep37395
[20] Li M R, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q . Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci, 2016,7:377
doi: 10.3389/fpls.2016.00377 pmid: 27066031
[21] Svitashev S, Schwartz C, Lenderts B, Young J K, Ciqan A M . Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun, 2016,7:13274
doi: 10.1038/ncomms13274 pmid: 27848933
[22] Feng C, Yuan J, Wang R, Liu Y, Birchler J A, Han F P . Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics, 2016,43:37-43
doi: 10.1016/j.jgg.2015.10.002
[23] Shan Q W, Wang Y P, Li J, Gao C X . Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 2014,9:2395-2410
doi: 10.1038/nprot.2014.157
[24] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32:947-951
doi: 10.1038/nbt.2969
[25] Cai Y P, Chen L, Liu X J, Sun S, Wu C X, Jiang B J, Han T F, Hou W S . CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064
doi: 10.1371/journal.pone.0136064
[26] Jacobs T B , LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015,15:16
doi: 10.1186/s12896-015-0131-2
[27] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821
doi: 10.1126/science.1225829
[28] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G . A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284
doi: 10.1016/j.molp.2015.04.007
[29] Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K . The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014,12:797-807
doi: 10.1111/pbi.2014.12.issue-6
[30] 杨远柱, 符辰建, 胡小淳, 张章, 周永祥, 宋永帮 . 株1S温敏核不育基因的发现及超级杂交早稻育种研究. 中国稻米, 2007, ( 6):17-22
doi: 10.3969/j.issn.1006-8082.2007.06.005
Yang Y Z, Fu C J, Hu X C, Zhang Z, Zhou Y X, Song Y B . Discovery of thermo-sensitive genic male sterile genes of Zhu1S and study on super hybrid early rice breeding. China Rice, 2007, ( 6):17-22 (in Chinese)
doi: 10.3969/j.issn.1006-8082.2007.06.005
[31] 李必湖, 吴厚雄, 徐孟亮, 梁满中, 张振华, 陈良碧 . 温敏核不育水稻育性对低温持续时间的敏感性差异比较研究. 作物学报, 2003,29:930-936
doi: 10.3321/j.issn:0496-3490.2003.06.023
Li B H, Wu H X, Xu M L, Liang M Z, Zhang Z H, Chen L B . Comparative studies on the sensitivity of fertility of TGMS rice lines to low temperature of consecutive time. Acta Agron Sin, 2003,29:930-936 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2003.06.023
[32] Xing Y Z, Zhang Q F . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!