欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1334-1346.doi: 10.3724/SP.J.1006.2018.01334

• 研究论文 • 上一篇    下一篇

甘蓝型油菜PIN家族基因的鉴定与生物信息学分析

高堃1,2(),华营鹏1,2,宋海星1,2,官春云3,张振华1,2,周婷1,2,*()   

  1. 1 湖南农业大学资源环境学院, 湖南长沙 410128
    2 南方粮油作物协同创新中心, 湖南长沙 410128
    3 国家油料作物改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2018-01-30 接受日期:2018-06-12 出版日期:2018-09-10 网络出版日期:2018-09-12
  • 通讯作者: 周婷
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0200103);国家自然科学基金项目(31101596);国家自然科学基金项目(31372130);湖南农业大学新进教师科研启动基金项目(30555|550100100021);湖南农业大学校青年基金项目(17QN40);国家现代农业产业技术体系建设专项资助

Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus

Kun GAO1,2(),Ying-Peng HUA1,2,Hai-Xing SONG1,2,Chun-Yun GUAN3,Zhen-Hua ZHANG1,2,Ting ZHOU1,2,*()   

  1. 1 College of Resource and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
    2 Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
    3 Hunan Branch, National Oil Crops Improvement Center, Changsha 410128, Hunan, China
  • Received:2018-01-30 Accepted:2018-06-12 Published:2018-09-10 Published online:2018-09-12
  • Contact: Ting ZHOU
  • Supported by:
    This study was supported by the National Key R&D Program of China(2017YFD0200103);National Natural Science Foundation of China(31101596);National Natural Science Foundation of China(31372130);Research Starting Foundation for New Teachers of Hunan Agricultural University(30555|550100100021);Youth Foundation of Hunan Agricultural University(17QN40);China Agriculture Research System

摘要:

PIN家族基因是一类调控植物生长素极性运输的重要载体元件, PIN基因编码生长素输出蛋白, 介导生长素在植物体的运输, 然而在基因组较复杂的甘蓝型油菜中缺乏系统研究。本研究运用生物信息学方法在甘蓝型油菜全基因组数据库筛选甘蓝型油菜PIN家族基因, 对鉴定出的29个BnPINs基因开展拷贝数变异、分子特征、跨膜结构域、保守基序、染色体定位、系统进化树构建、PIN蛋白二级结构及三级结构预测等研究, 结合高通量转录组测序进行低氮胁迫下的转录水平分析。结果表明, 甘蓝型油菜PIN家族基因拷贝数明显多于拟南芥、甘蓝和白菜所具有的PIN家族基因数量; BnPINs蛋白多属于由碱性氨基酸组成的稳定蛋白, 含有保守的N末端结构域, 二级结构与拟南芥PIN蛋白相似; 系统进化选择能力分析表明, BnPINs基因与甘蓝和白菜PIN家族基因进化关系相近。转录组测序表明, BnPIN1sBnPIN2sBnPIN3s基因主要在甘蓝型油菜根部表达且受长期低氮(72 h)诱导, BnPIN6sBnPIN8s基因主要在地上部表达, 低氮会抑制BnPIN6s表达。本研究结果为进一步研究甘蓝型油菜PIN家族基因生物学功能尤其是在响应低氮胁迫中的功能奠定基础, 为已知大量数据的其他物种家族基因生物信息学研究提供参考。

关键词: 甘蓝型油菜, 生长素, PIN, 家族基因, 生物信息学

Abstract:

The PIN family is a type of important carrier elements that regulate the polar transportation of auxin. The PIN genes encode auxin efflux carriers with multiple transmembrane domains that mediate auxin transport in plants. However, there is a lack of systematic research in the genome of complexity Brassica napus. In this study, the BnPIN genes were screened from the Brassica Database using bioinformatics, and study on molecular characteristics of BnPIN proteins, such as copy number variations, transmembrane domains, conserved motifs, chromosomal locations, phylogenetic relationships, secondary and three-dimensional structures, and high-throughput transcriptome sequencing was used to analyze the transcriptional level under low nitrate stress. The results showed that most of the BnPIN proteins which is belonged to the stable protein consisting of basic amino acids. The BnPIN family proteins contained secondary structures similar to those of Arabidopsis PINs accompanied by conserved N-terminal domains. The phylogenetic analysis showed that BnPIN genes were similar to the corresponding homologs of Brassica oleracea and Brassica rapa. High-throughput transcriptome analysis showed that the BnPIN1s, BnPIN2s, and BnPIN3s genes were mainly expressed in roots of Brassica napus under long-term (72 h) low nitrate (NO3 -) stress. The BnPIN6s and BnPIN8s genes were mainly expressed in the shoot and limited NO3 - repressed the BnPIN6s expression. This study is valuable for the research that the roles of the BnPIN family in the regulation of auxin transport. Our results also provide reference for the integrated genomic and transcriptomic studies of gene family in plant species with complex genomes.

Key words: Brassica napus, auxin, PIN, gene family, bioinformatics

图1

甘蓝型油菜、拟南芥、甘蓝、白菜PIN家族基因拷贝数变异柱状图顶部数值为该物种拷贝的基因数目。"

图2

甘蓝型油菜PIN家族蛋白结构域蓝色代表跨膜结构域, 粉色代表低复杂度结构。"

图3

甘蓝型油菜PIN家族蛋白氨基酸序列比对和保守结构域分析黄色区域为高度保守的氨基酸位点。"

图4

23个甘蓝型油菜PIN基因染色体分布"

图5

甘蓝型油菜PIN家族蛋白保守基序分布左侧为蛋白系列名称, 右侧不同颜色分别对应不同的保守基序在系列上的位置。"

图6

甘蓝型油菜PIN家族基因系统进化分析不同颜色代表不同的进化分支, I、II代表PIN家族2个亚组。"

图7

甘蓝型油菜BnPIN5b蛋白二级结构分析 GOR4和PSIPRED分别是进行二级结构分析的2种不同的工具。"

图8

甘蓝型油菜BnPIN2a蛋白三级结构预测三级结构预测该晶体为转运子。"

图9

低氮胁迫下甘蓝型油菜PIN家族基因转录组分析 S: 地上部; R: 根; 0、3、72 (h)代表缺氮胁迫的时间。图中结果表示3次生物学重复的平均值。"

图10

低氮胁迫下甘蓝型油菜PIN家族基因共表达网络分析和表达量分析 A: 共表达网络分析; B: 基因表达量分析; 圆圈节点代表基因, 节点的大小代表节点之间相互作用的能力, 两个节点之间的连线代表基因之间的相互作用; S: 地上部; R: 根; 0、3、72 (h)代表缺氮胁迫的时间。图中结果表示3次生物学重复的平均值。"

[1] 刘士平, 王璐, 王继荣, 薛艳红, 寿惠霞 . 高等植物的PIN基因家族. 植物生理学通讯, 2009,45:833-841
Liu S P, Wang L, Wang J R, Xue Y H, Shou H X . PIN gene family in higher plants.. Plant Physiol Commun, 2009,45:833-841 (in Chinese)
[2] Petrášek J, Friml J . Auxin transport routes in plant development. Development, 2009,136:2675-2688
[3] Paponov I A, Teale W D, Trebar M, Blilou I, Palme K . The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci, 2005,10:170-177
doi: 10.1016/j.tplants.2005.02.009 pmid: 15817418
[4] Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Anzola J M, Sieberer T, Friml J, Luschnig C . Intracellular trafficking and proteolysis of the Arabidopsis auxin efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol, 2006,8:249-256
[5] Schnabel E L, Frugoli J . The PIN and LAX families of auxin transport genes in Medicago truncatula. Mol Genet Genomics, 2004,272:420-432
[6] Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zažímalová E. The PIN-FORMED ( PIN) protein family of auxin transporters. Genome Biol, 2009,10:249-254
[7] Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K . Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998,282:2226-2230
doi: 10.1126/science.282.5397.2226 pmid: 9856939
[8] Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B . The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005,433:39-44
doi: 10.1038/nature03184 pmid: 15635403
[9] Ding Z , Galván-Ampudia C S, Demarsy E, Łangowski L, Kleine-Vehn J, Fan Y, Morita M T, Tasaka M, Fankhauser C, Offringa R. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol, 2011,13:447-452
[10] Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G . AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002,108:661-673
doi: 10.1016/S0092-8674(02)00656-6 pmid: 11893337
[11] Mravec J, Skupa P, Bailly A, Hoyerová K, Krecek P, Bielach A, Petrásek J, Zhang J, Gaykova V, Stierhof Y D, Dobrev P, Schwarzerová K, Rolcík J, Seifertová D, Luschnig C, Benková E, Zazimalová E, Geisler M, Friml J . Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009,459:1133-1140
doi: 10.1038/nature08066 pmid: 19506555
[12] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J . Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602
doi: 10.1016/S0092-8674(03)00924-3 pmid: 14651850
[13] Kleine-Vehn J, Ding Z, Jones A R, Tasaka M, Morita M T, Friml J . Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA, 2010,107:22344-22349
doi: 10.1073/pnas.1013145107 pmid: 21135243
[14] Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, Skupa P, Pollmann S, Mravec J, Petrášek J, Zažímalová E, Honys D, Rolčík J, Murphy A, Orellana A, Geisler M, Friml J . ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun, 2012,3:941
[15] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P H . The Arabidopsis thaliana AG-RAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA, 1998,95:15112-15117
[16] 李俊华, 种康 . 植物生长素极性运输调控机理的研究进展. 植物学通报, 2006,23:466-477
Li J H, Chong K . Current research advances on polar auxin transport in plant. Chin Bull Bot, 2006,23:466-477 (in Chinese with English abstract)
[17] 刘进平 . 生长素运输机制研究进展. 中国农学通报, 2007,23(5):432-433
Liu J P . Research advances on auxin transport mechanism. Chin Agric Sci Bull, 2007,23(5):432-433 (in Chinese with English abstract)
[18] 李运合, 孙光明, 吴蓓 . 植物生长素的极性运输载体研究进展. 西北植物学报, 2009,29:1714-1722
Li Y H, Sun G M, Wu B . Advances on carriers of plant polar auxin transport. Acta Bot Boreali-Occident Sin, 2009,29:1714-1722 (in Chinese with English abstract)
[19] 朱德进, 张辉, 黄卉, 宁运旺, 张永春 . 不同施肥处理对不同地力水平油菜产量和经济效益的影响. 江苏农业科学, 2013,41(10):73-76
Zhu D J, Zhang H, Huang H, Ning Y W, Zhang Y C . Different fertilization treatments on rape yield at different soil fertility levels and the impact of economic benefits. Jiangsu Agric Sci, 2013,41(10):73-76 (in Chinese with English abstract)
[20] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F . The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43:1035-1039
[21] Bayer P E, Hurgobin B, Golicz A, Chan C K, Yuan Y, Lee H T, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King G J, Batley J, Edwards D . Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J, 2017,10:1-9
[22] Rathke G W, Christen O, Diepenbrock W . Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005,94:103-113
[23] de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, Leyser O . Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol, 2014,166:384-395
[24] Liu J X, An X, Cheng L, Chen F J, Bao J, Yuan L X, Zhang F S, Mi G H . Auxin transport in maize roots in response to localized nitrate supply. Ann Bot, 2010,106:1019-1026
doi: 10.1093/aob/mcq202 pmid: 29906712025
[25] Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J , Sonnhammer E L L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2013,27:1-9
[26] Letunic I, Doerks T, Bork P . SMART: recent updates, new developments and status in 2015. Nucl Acids Res, 2015,43:D257-D260
doi: 10.1093/nar/gku949 pmid: 25300481
[27] Gasteiger E, Hoogland C, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A . ExPASy: the proteomics server for in-depth. Nucl Acids Res, 2003,31:3784-3788
[28] Hofmann K, Stoffel W . TM base-A database of membrane spanning protein segments. Biol Chem Hoppe Seyler, 1993,374:1-6
doi: 10.1056/NEJM199001043220121
[29] Bailey T L, Elkan C . Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intel Syst Mol Biol, 1994,2:28-36
pmid: 7584402
[30] Larkin M A, Blackshields G, Brown N P, Chenna R ,McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. , Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948
[31] Kumar S, Nei M, Dudley J, Tamura K . MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform, 2008,9:299-306
doi: 10.1093/bib/bbn017 pmid: 2562624
[32] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A . Circos an information aesthetic for comparative genomics. Genome Res, 2009,19:1639-1645
[33] Combet C, Blanchet C, Geourjon C, Deléage G . Network protein sequence analysis. Trends Biochem Sci, 2000,25:147-150
[34] Jones D T . Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 1999,292:195-202
doi: 10.1006/jmbi.1999.3091 pmid: 10493868
[35] Buchan D W A, Minneci F, Nugent T C O, Bryson K, Jones D T . Scalable web services for the PSIPRED protein analysis workbench. Nucl Acids Res, 2013,41:W340-W348
[36] Mezulis S Sternberg M J E, Kelley L A. , Phyre Storm: a web server for fast structural searches against the PDB. J Mol Biol, 2016,428:702-708
doi: 10.1016/j.jmb.2015.10.017 pmid: 26517951
[37] Hoagland D R, Arnon D I . The water culture method for growing plants without soil. Calif Agric Exp Stn Circ, 1950,347:32
doi: 10.1016/S0140-6736(00)73482-9
[38] Morin D, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T J , McDonald H, Varhol R, Jones S J M, Marra M A. Profiling the He La S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 2008,45:81-94
[39] Eisen M B, Spellman P T, Brown P O, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998,95:14863-14868
[40] Kohl M, Wiese S, Warscheid B . Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011,696:291-303
[41] 王占军, 金伦, 徐忠东, 欧祖兰 . 麻风树LEC1基因的生物信息学分析. 生物学杂志, 2014,31(4):68-72
Wang Z J, Jin L, Xu Z D, Ou Z L . Bioinformatics analysis of gene LEC1 from Jatropha curcas. J Biol, 2014,31(4):68-72 (in Chinese with English abstract)
[42] Cazzonelli1 C I, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, Nisar N, Tarle G, Cuttriss A J, Searle I R, Benkova E, Mathesius U, Masle J, Friml J, Pogson B J . Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One, 2013,8:1-14
[43] 倪迪安, 许智宏 . 生长素的生物合成、代谢、受体和极性运输. 植物生理学通讯, 2001,37:346-352
Ni D A, Xu Z H . Auxin biosynthesis, metabolism, receptor and polar transport. Plant Physiol Commun, 2001,37:346-352 (in Chinese)
[44] Li K, Kamiya T, Fujiwara T . Differential roles of PIN1 and PIN2 in root meristem maintenance under low-B conditions in Arabidopsis thaliana. Plant Cell Physiol, 2015,56:1205-1214
[45] Niu Y F, Jin G L, Li X, Tang C X, Zhang Y S, Liang Y C, Yu J Q . Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana( L.) Heynh. J Exp Bot, 2015,66:3-14
[46] Wu D, Shen H, Yokawa K, Baluška F . Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot, 2014,65:5305-5315
[47] 陈赢男 . 生长素转运蛋白对水稻株型、根系生长和磷素营养的调控作用. 南京农业大学博士学位论文, 江苏南京, 2012
Chen Y N . Regulation of Auxin Transporter on Plant Type, Root Growth and Phosphorus Nutrition in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2012 (in Chinese with English abstract)
[48] Peer W N, Bandyopadhyay A, Blakeslee J J, Makam S N, Chen R J, Masson P H, Murphy A S . Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell, 2004,16:1898-1911
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!