作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1347-1356.doi: 10.3724/SP.J.1006.2018.01347
Dan-Xia KE(),Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG
摘要:
HD-Zip I类转录因子在植物抵御非生物胁迫过程中发挥重要功能, 本研究克隆得到1个大豆HD-Zip I类基因GmHDL57 (Glycine max homeodomain-leucine zipper protein 57)。序列分析表明, GmHDL57基因包含1个1038 bp的开放读码框, 编码345个氨基酸, 具有HD-Zip类家族蛋白典型的保守结构域。基因时空表达分析表明, 大豆GmHDL57基因在大豆植株的各个不同时期及不同器官中均有表达, 在花中表达量最高。采用实时荧光定量PCR技术分析了4种非生物胁迫(脱落酸、NaCl、PEG、冷)对幼苗期大豆根中GmHDL57基因表达的影响。结果表明, 该基因表达量受高盐胁迫诱导显著升高, 在脱落酸及干旱胁迫下上升幅度较小, 但在冷胁迫下呈下降趋势。盐胁迫前后GmHDL57基因在根中的表达量明显高于茎和叶, 在盐胁迫48 h时达到峰值, 72 h和96 h时表达量缓慢下降。此外, 构建GmHDL57基因的植物超表达载体, 利用根癌农杆菌转化法获得转基因百脉根, 200 mmol L -1 NaCl处理条件下, 转基因百脉根的株高、根长、叶绿素含量、根系活力以及阳离子K +、Ca 2+含量显著高于野生型, 而丙二醛含量、相对质膜透性以及Na +的含量明显低于野生型。以上研究结果表明, GmHDL57基因参与了大豆对非生物胁迫的应答过程, 过量表达GmHDL57基因能够显著提高百脉根的抗盐能力。
[1] | Ariel F D, Manavella P A, Dezar C A, Chan R L . The true story of the HD-Zip family. Trends Plant Sci, 2007,12:419-426 |
[2] |
Mukherjee K, Brocchieri L, Burglin T R . A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009,26:2775-2794
doi: 10.1093/molbev/msp201 pmid: 2775110 |
[3] | Harris J C, Hrmova M, Lopato S, Langridge P . Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol, 2011,190:823-837 |
[4] | Henriksson E ,Olsson A S B, Johannesson H, Johansson H, Hanson J, Engström P, Söderman E. , Homeodomain leucine zipper class I genes in Arabidopsis expression patterns and phylogenetic relationships. Plant Physiol, 2005,139:509-518 |
[5] | Olsson A S B, Engstrom P, Soderman E . The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004,55:663-677 |
[6] | Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E . Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002,21:3029-3038 |
[7] | Ré D A, Dezar C A, Chan R L, Baldwin I T, Bonaventure G . Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011,62:155-166 |
[8] | Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M . Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010,22:2171-2183 |
[9] | 李明娜, 龙瑞才, 杨青川, 沈益新, 康俊梅, 张铁军 . 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析. 中国农业科学, 2014,47:622-632 |
Li M N, Long R C, Yang Q C, Shen Y X, Kang J M, Zhang T J . Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from alfalfa.. Sci Agric Sin, 2014,47:622-632 (in Chinese with English abstract) | |
[10] | Cao L, Yu Y, Duanmu H Z, Chen C, Duan X B, Zhu P H, Chen R R, Li Q, Zhu Y M, Ding X D . A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol, 2016,16:184 |
[11] | Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y . Genome-wide analysis of soybean HD-zip gene family and expression profiling under salinity and drought treatments. PLoS One, 2014,9:e87156 |
[12] | Belamkar V, Weeks N T, Bharti A K, Farmer A D, Graham M A, Cannon S B . Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean ( Glycine max) during dehydration and salt stress. BMC Genomics, 2014,15:950 |
[13] |
Wang Y J, Li Y D, Luo G Z, Tian A G, Wang H W, Zhang J S, Chen S Y . Cloning and characterization of an HD-Zip I gene GmHZ1 from soybean. Planta, 2005,221:831-843
doi: 10.1007/s00425-005-1496-6 |
[14] | 柯丹霞, 李祥永, 王磊, 程琳, 刘永辉, 李小艳, 王慧芳 . 大豆GmHAT5的克隆及其转基因百脉根的抗盐分析. 中国农业科学, 2017,50:1559-1570 |
Ke D X, Li X Y, Wang L, Cheng L, Liu Y H, Li X Y, Wang H F . Isolation of GmHAT5 from Glycine max and analysis of saline tolerance for transgenic Lotus japonicus.. Sci Agric Sin, 2017,50:1559-1570 (in Chinese with English abstract) | |
[15] | 柯丹霞, 李祥永 . 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报(自然科学版), 2015,28:621-626 |
Ke D X, Li X Y . Research progress of key regulatory proteins in nodulation pathway. J Xinyang Nor Univ (Nat Sci Edn), 2015,28:621-626 (in Chinese with English abstract) | |
[16] | Marquez A J . Lotus japonicus Handbook. The Netherlands: Springer, 2005. pp 279-284 |
[17] | Agalou A, Purwantomo S, Overnas E, Johannesson H, Zhu X Y ,Estiati A, de Kam R J, Engström P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L Z, Meijer A H, Ouwerkerk P B. , A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol, 2008,66:87-103 |
[18] |
Zhang S X, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B . Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012,80:571-585
doi: 10.1007/s11103-012-9967-1 pmid: 23109182 |
[19] | Zhao Y, Zhou Y Q, Jiang H Y, Li X Y, Gan D F, Peng X J, Zhu S W, Cheng B J . Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One, 2011,6:e28488 |
[20] | Hu R B, Chi X Y, Chai G H, Kong Y Z, He G, Wang X Y, Shi D C, Zhang D Y, Zhou G K . Genome-wide identification, evolutionary expansion, and expression profile of homeodomain- leucine zipper gene family in poplar (Populus trichocarpa). PLoS One, 2012,7:e31149 |
[21] | Liu W, Fu R, Li Q, Li J, Wang L N, Ren Z H . Genome-wide identification and expression profile of homeodomain-leucine zipper class I gene family in Cucumis sativus. Gene, 2013,531:279-287 |
[22] | Fu R, Liu W, Li Q, Li J, Wang L N, Ren Z H . Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome, 2013,56:395-405 |
[23] |
Elhiti M, Stasolla C . Structure and function of homeodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav, 2009,4:86-88
doi: 10.4161/psb.4.2.7692 pmid: 2637487 |
[24] | Sahu B B, Shaw B P . Isolation, identification and expression analysis of salt-induced genes in Suaeda maritime, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol, 2009,9:69 |
[25] | 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明 . 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报, 2013,38:971-979 |
Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M . Isolation of GsGST19 from Glycine soja and analysis of saline- alkaline tolerance for transgenic Medicago sativa.. Acta Agron Sin, 2013,38:971-979 (in Chinese with English abstract) | |
[26] | 魏正巍, 朱延明, 化烨, 才华, 纪巍, 柏锡, 王臻昱, 文益东 . 转GsPPCK1基因苜蓿植株的获得及其耐碱性分析. 作物学报, 2013,39:68-75 |
Wei Z W, Zhu Y M, Hua Y, Cai H, Ji W, Bai X, Wang Z Y, Wen Y D . Transgenic alfalfa with GsPPCK1 and its alkaline tolerance analysis.. Acta Agron Sin, 2013,39:68-75 (in Chinese with English abstract) | |
[27] | 赵阳, 朱延明, 柏锡, 纪巍, 吴婧, 唐立郦, 才华 . 转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析. 作物学报, 2014,40:431-438 |
Zhao Y, Zhu Y M, Bai X, Ji W, Wu J, Tang L L, Cai H . Over-expressing GsCBRLK/SCMRP enhances alkaline tolerance and methionine content in transgenic Medicago sativa. . Acta Agron Sin, 2014,40:431-438 (in Chinese with English abstract) | |
[28] |
Yang T, Poovaiah B W . Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Nat Acad Sci USA, 2002,99:4097-4102
doi: 10.1073/pnas.052564899 pmid: 122654 |
[29] | 朱娉慧, 陈冉冉, 于洋, 宋雪薇, 李慧卿, 杜建英, 李强, 丁晓东, 朱延明 . 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析. 作物学报, 2017,43:1319-1327 |
Zhu P H, Chen R R, Yu Y, Song X W, Li H Q, Du J Y, Li Q, Ding X D, Zhu Y M . Cloning of gene GsWRKY15 related to alkaline stress and alkaline tolerance of transgenic plants.. Acta Agron Sin, 2017,43:1319-1327 (in Chinese with English abstract) | |
[30] |
Olhoft P M, Flagel L E, Donovan C M . Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 2003,216:723-735
doi: 10.1007/s00425-002-0922-2 pmid: 12624759 |
[31] | 王昌陵, 赵军, 李英慧, 范云六, 张丽娟, 刘章雄, 关荣霞, 吕淑霞, 常汝镇, 邱丽娟 . 转录因子ABP9 转化大豆(Glycine max L.)及遗传转化条件优化. 中国农业科学, 2008,41:1908-1916 |
Wang C L, Zhao J, Li Y H, Fan Y L, Zhang L J, Liu Z X, Guan R X, Lyu S X, Chang R Z, Qiu L J . Transforming transcription factor ABP9 into Soybean and optimization of the transformation system. Sci Agric Sin, 2008,41:1908-1916 (in Chinese with English abstract) | |
[32] | Devi M K, Sakthivela G, Giridhar P . Protocol for augmented shoot organogenesis in selected variety of soybean. J Exp Biol, 2012,50:729-734 |
[33] | 杨权, 王月月, 刘炎光, 蒋春志, 张孟臣, 张洪霞, 张洁, 王冬梅 . 大豆子叶节遗传转化体系优化及抗逆基因AtNHX5的转化研究. 大豆科学, 2015,34:205-211 |
Yang Q, Wang Y Y, Liu Y G, Jiang C Z, Zhang M C, Zhang H X, Zhang J, Wang D M . Study on optimization of soybean cotyledonary node genetic transformation system and the transformation of resistance gene AtNHX5.. Soybean Sci, 2015,34:205-211 (in Chinese with English abstract) | |
[34] | 柯丹霞, 熊文真, 彭昆鹏, 李祥永 . 抗盐基因Gm01g04890大豆子叶节遗传转化研究. 信阳师范学院学报(自然科学版), 2017,30(1):46-51 |
Ke D X, Xiong W Z, Peng K P, Li X Y . Study on genetic transformation of salt resistant gene Gm01g04890 in soybean. J Xinyang Nor Univ(Nat Sci Edn), 2017,30(1):46-51 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|