作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1357-1366.doi: 10.3724/SP.J.1006.2018.01357
刘忠祥1,*(),杨梅2,*(),殷鹏程2,周玉乾1,何海军1,邱法展2,*()
Zhong-Xiang LIU1,*(),Mei YANG2,*(),Peng-Cheng YIN2,Yu-Qian ZHOU1,Hai-Jun HE1,Fa-Zhan QIU2,*()
摘要:
株高是影响玉米产量的重要因子之一, 节间数目和节间长度是导致株高差异的主要因素。本研究发现2个高代回交重组自交系W1和W2株高差异显著(P<0.001), 二者穗上部和穗下部节间数目都相同, 细胞形态分析发现节间细胞长度是引起二者株高差异的主要原因; 外源GA试验结果表明控制株高差异的QTL/基因是GA途径之外的新基因。因此, 利用来源于W1和W2的F2及F2:3家系群体在2年3个环境中将控制株高的主效QTL qPH3.2共定位在第3染色体标记C42-P17之间20 Mb范围内, 最高可解释22.22%的表型变异。进一步利用目标区段重组交换单株及自交后代家系将qPH3.2分解为2个主效QTL qPH3.2.1和qPH3.2.2; 随后利用目标区段的跨叠系将qPH3.2.1和qPH3.2.2分别精细定位在YH305-Y72 (2 Mb)及YH112-Y150 (1.6 Mb)之间。本研究的结果为玉米株高的遗传改良提供了真实可靠的遗传位点, 也为后续株高QTL的克隆奠定了良好的工作基础。
[1] | Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536 |
[2] | Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S . Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302:81-84 |
[3] | Fu Z, Shao K K, Chen D Z, Wang B M, Xu Z, Ding D, Tang J . Correlation analysis of the internode number above ear and lodging resistance in maize. J Henan Agric Univ, 2011,45:149-154 |
[4] |
Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M C, Castelletti S, Tuberosa R . Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol, 2011,11:1-15
doi: 10.1186/1471-2229-11-4 pmid: 21211047 |
[5] | Kong L J, Ma X J, Lu H, Yuan J H . Effects of environmental factors on plant traits in maize. J Anhui Agric Sci, 2014,42:11641-11643 |
[6] |
Brown C L, Sommer H E . Shoot growth and histogenesis of trees possessing diverse patterns of shoot development. Am J Bot, 1992,79:335-346
doi: 10.1002/j.1537-2197.1992.tb14557.x |
[7] | Brown C L, Pienaar L V . The predominant role of the pith in the growth and development of internodes in Liquidambar styraciflua( Hamamelidaceae): I. Histological basis of compressive and tensile stresses in developing primary tissues. Am J Bot, 1995,82:769-776 |
[8] | Kurotani K I, Hattori T, Takeda S . Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice. Plant Signal Behav, 2015,10:1-4 |
[9] | Yang D L, Yao J, Mei C S, Tong X H, Zeng L J, Li Q, Xiao L T, Sun T P, Li J G, Deng X W, Chin M L, Thomashowb M F, Yang Y N, He Z H, He S Y . Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA, 2012,109:1992-1200 |
[10] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
doi: 10.1038/ng.143 pmid: 18454147 |
[11] |
Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G . The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014,84:243-257
doi: 10.1007/s11103-013-0129-x pmid: 24214124 |
[12] | Gao S, Fang J, Xu F, Wang W, Chu C . Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell, 2016,28:680-695 |
[13] | Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B . Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One, 2012,7(5):e37040 |
[14] |
Berke T G , ocheford T R. Rquantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995,35:1542-1549
doi: 10.2135/cropsci1995.0011183X003500060004x |
[15] | Edwards M, Stuber C, Wendel J . Molecular-marker-facilitated investigations of quantitative-trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987,116:113-125 |
[16] | Beavis W, Grant D, Albertsen M, Fincher R . Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991,83:141-145 |
[17] | Lu H, Romero S J, Bernardo R . Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003,107:494-502 |
[18] | Yan J B, Tang J H, Huang Y Q, Shi Y G, Li J S, Zheng Y L . Dynamic analysis of QTL for plant height at different developmental stages in maize ( Zea mays L.). Chin Sci Bull, 2003,48:2601 |
[19] | Lan J H, Chu D . Study on the genetic basis of plant height and ear height in maize ( Zea mays L.) by QTL dissection. Hereditas, 2005,27:925-934 |
[20] |
Lima M, de Souza C L, Bento D, de Souza A P, Carlini-Garcia L A . Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed, 2006,17:227-239
doi: 10.1007/s11032-005-5679-4 |
[21] | Tang J, Teng W, Yan J, Ma X, Meng Y, Dai J, Li J S . Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007,155:117-124 |
[22] | Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X . QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas, 2008,30:1477-1486 |
[23] | Zhang H, Liu X, Wu X, Nan Z, Hui G, Luo Q. Study on QTL identification associated with plant height in maize (Zea mays L.). In: 5th International Conference on Bioinformatics and Biomedical Engineering, IEEE, Wuhan, China, 2011. pp 1-4 |
[24] | 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤 . 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013,39:549-556 |
Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q . QTL Identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013,39:549-556 (in Chinese with English abstract) | |
[25] | 郑克志, 李元, 瞿会, 闫伟, 张旷野, 宋茂兴, 吕香玲, 李凤海, 史振声 . 玉米株高和穗位高的QTL定位. 江苏农业科学, 2015,43(5):61-63 |
Zheng K Z, Li Y, Zhai H, Yan W, Zhang K Y, Song M X, Lyu X L, Li F H, Shi Z S . Mapping of QTL for plant height an ear height in maize Jiangsu Agric Sci, 2015,43(5):61-63 (in Chinese) | |
[26] | 何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超 . 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016,49:1443-1452 |
He K H, Chang L G, Cui T T, Qu J Z, Guo D W, Xu S T, Zhang W X, Zhang R H, Xue J Q, Liu J C . Mapping of QTL for plant height an ear height in maize under multi-environment Sci Agric Sin, 2016,49:1443-1452 (in Chinese with English abstract) | |
[27] | 李浩川, 陈琼, 杨继伟, 曲彦志, 张慧, 张朝林, 李彦, 贾玺, 刘宗华 . 基于双单倍体群体的玉米株高和穗位高QTL分析. 河南农业大学学报, 2016,50(2):161-166 |
Li H C, Chen Q, Yang J W, Qu Y Z, Zhang H, Zhang C L, Li Y, Jia X, Liu Z H . QTL analysis of plant and ear height by using DH population in maize J Henan Agric Univ, 2016,50(2):161-166 (in Chinese with English abstract) | |
[28] |
Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D A, Tao Y S, Zheng Y L, Zhang Z X . ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013,73:405-416
doi: 10.1111/tpj.12038 pmid: 23020630 |
[29] |
Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R, Briggsav S P . Cloning and characterization of the maize An1 gene. Plant Cell, 1995,7:75-84
doi: 10.1105/tpc.7.1.75 pmid: 7696880 |
[30] | Winkler R G, Helentjaris T . The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995,7:1307-1317 |
[31] | Souza C L, Zinsly J R . Relative genetic potential of brachytic maize ( Zea mays L.) varieties as breeding populations. Revista Brasileira De Genetica, 1985,8:523-533 |
[32] | Fujioka S, Yamane H, Spray C R, Gaskin P, Macmillan J, Phinney B O, Takahashi N . Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol, 1988,88:1367-1372 |
[33] |
Phinney B O . Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci USA, 1956,42:185-189
doi: 10.1073/pnas.42.4.185 pmid: 16589846 |
[34] | Cassani E, Bertolini E, Cerino B F, Landoni M, Gavina D, Sirizzotti A, Pilu R . Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed, 2009,24:375-385 |
[35] |
Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[36] | Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011,23:550-566 |
[37] | Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181 |
[38] | Lincoln S E, Daly M J, Lander E S . Constructing Genetic Maps with MapMaker/EXP3. 0. 1992 |
[39] | Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C ,McLaren G, Khush G S. , Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003,107:679-690 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[12] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
|