欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 1-9.doi: 10.3724/SP.J.1006.2019.82032

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻圆粒基因RS的鉴定和定位

陈雅萍,缪荣,刘喜,陈本佳,兰杰,马腾飞,王益华,刘世家,江玲()   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京210095
  • 收稿日期:2018-06-07 接受日期:2018-10-08 出版日期:2018-11-01 网络出版日期:2018-11-09
  • 通讯作者: 江玲
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100101-08);国家自然科学基金重点项目(91535302);国家级大学生创新性实验计划项目(201710307014)

Identification and mapping of round seed related gene in rice (Oryza sativa L.)

Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG()   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement / Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2018-06-07 Accepted:2018-10-08 Published:2018-11-01 Published online:2018-11-09
  • Contact: Ling JIANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100101-08);the Key Projects of National Natural Science Foundation(91535302);the National University Student Innovation Program(201710307014)

摘要:

阐明水稻籽粒大小相关基因的遗传和分子机制对水稻产量形成具有重要意义。利用甲基磺酸乙酯(ethyl methanesulfonate, EMS)诱变粳稻品种“宁粳3号”筛选获得圆粒突变体round seed (rs)。遗传分析表明, 突变体rs圆粒表型由单隐性核基因控制。颖壳扫描电镜观察发现, rs籽粒变圆主要是细胞数目改变导致的。在突变体rs中, 细胞周期相关基因的表达较野生型显著升高。将RS定位在第3染色体短臂标记RM3413与N3-5之间, 物理距离约589 kb。RS突变影响BR信号途径, 改变了粒型相关基因的表达。本研究有助于阐明水稻籽粒发育的分子机制。

关键词: 水稻, 圆粒突变体, 表型分析, 基因定位

Abstract:

It is significant to clarify the genetic and molecular mechanism of genes related to rice grain size for rice yield. A mutant round seed (rs) was screened from japonica variety “Ningjing 3” mutagenized by ethyl methane sulfonate (EMS). Genetic analysis revealed that the phenotype of rs was controlled by a single recessive nuclear gene. Scanning electron microscope observation indicated that the change of cell number was responsible for the mutant phenotype of rs. Compared with the wild type, the expression of cell cycle related-genes increased significantly in rs. RS was located in the 589 kb region of chromosome 3, between markers RM3413 and N3-5. The RS mutation affected BR signal pathway, and changed the expression of grain size-related genes. This research contributes to elucidating the molecular mechanism of rice grain development.

Key words: rice (Oryza sativa L.), round seed mutant, phenotypic analysis, gene mapping

表1

用于精细定位的分子标记"

标记
Marker
正向引物序列
Forward primer sequence (5°→3°)
反向引物序列
Reverse primer sequence (5°→3°)
N3-5 GTCTGTGCGCTCCTTGTTCTAGC CCTGGACCAATTTGTATGGTTGG
N3-9 GATGCAGTAGGAACACCAAACAGC ATCGAGTACCAAGTGCCTGTGC
N3-10 GGTTTGGGAGCCCATAATCT CTGGGCTTCTTTCACTCGTC
RM3413 TTAGAGGAGATGATGGTGCAACG AGCAGCCATTGAATGTGTTTGG
RM14282 CCCAAACACAAACACAAAGAGAGC AACACGCAGGTCCTCTTGAACC
I3-2 TACTTTAATTTTGCAGCTC TTTTACCCCACTCCATCT

表2

野生型和rs的农艺性状比较"

性状 Trait 野生型 Wild type 突变体 rs
粒长 Grain length (mm) 7.50±0.009 6.39±0.023**
粒宽 Grain width (mm) 3.13±0.021 3.58±0.003**
长/宽比 Length/width ratio 2.42±0.013 1.80±0.009**
粒厚 Grain thickness (mm) 1.14±0.025 1.28±0.062**
千粒重 1000-grain weight (g) 25.45±0.890 22.51±0.252**
株高 Plant height (cm) 91.40±2.633 90.50±2.121
穗长 Panicle length (cm) 17.35±0.803 17.19±0.709
分蘖数 Number of tillers 11.00±2.160 10.1±2.025
结实率 Seed setting rate (%) 72.69±2.430 56.90±4.270**

表3

突变体rs的遗传分析"

杂交组合
Cross-combination
总株数
Total number
of plants
正常表现
Wild-type
phenotype
突变表现
Mutant
phenotype
χ2(3:1)
rs/WT 174 135 39 0.62
WT/rs 207 161 46 0.85

图 1

野生型和突变体rs的表型 A: 野生型和rs在抽穗期植株表现, 比例尺为10 cm。B, C: 野生型和rs糙米籽粒表现。比例尺为6 mm。D, F: 野生型和rs粒长、粒宽与千粒重比较。**代表突变体与野生型之间在P = 0.01水平上差异显著。"

图2

颖壳组织学分析 A, B: 扫描电镜观察颖壳外表皮。比例尺为200 μm。C, D: 颖壳外表皮细胞长度与宽度的比较。E, F: 颖壳外表皮细胞数目的比较。 *和**分别表示在P= 0.05与P=0.01水平上差异显著。"

图3

细胞周期相关基因(CycA2;1、CycD4、E2F2、CycT1、CDKB、CDKA1、CycA2;2、Cdc20和CycA2;3)在野生型与rs中的表达分析 数据结果为3次生物重复平均值, *和**分别表示在P = 0.05与0.01水平上差异显著。"

图4

RS基因的精细定位 黑色圆圈表示着丝粒; 粗竖线表示共分离标记; 标记下方的数字为极端个体的数目。"

图5

野生型和突变体rs 对2,4-epiBL处理的响应 A: 不同2,4-epiBL浓度处理, 上面为野生型, 下面为rs。B: 不同2,4-epiBL浓度处理叶夹角的变化。C: 野生型和rs中BR合成和信号转导途径基因的表达水平。**分别代表突变体与野生型之间差异达0.01显著水平。"

图6

粒型相关基因在野生型和突变体rs中的表达 *与**分别表示在P= 0.05与0.01水平上差异显著。*P= 0.05; **P =0.01."

[1] Xing Y, Zhang Q . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739
[2] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
doi: 10.1073/pnas.1014419107
[3] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[4] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[5] Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z . A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:17064-17071.
doi: 10.1038/nplants.2017.64 pmid: 28481332
[6] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-952.
doi: 10.1038/ng.3346 pmid: 26147619
[7] Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q . Differential expression of GS5 regulates grain size in rice. J Exp Bot, 2015,66:2611-2634.
doi: 10.1093/jxb/erv058 pmid: 25711711
[8] Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J . The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One, 2012,7:e34231.
doi: 10.1371/journal.pone.0034231 pmid: 22457828
[9] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40:1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[10] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[11] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[12] Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J M . GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043-17080.
doi: 10.1038/nplants.2017.43 pmid: 28394310
[13] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M . A rice brassinosteroid-deficient mutant,ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003,15:2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[14] Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C . Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015,112:11102-11107.
doi: 10.1073/pnas.1512748112 pmid: 26283354
[15] Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S . OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin in rice leaf sheath. Plant Mol Biol, 2004,55:541-552.
doi: 10.1007/s11103-004-1178-y pmid: 15604699
[16] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M . Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000,12:1591-1605.
[17] Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F . OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015,84:672-681.
doi: 10.1111/tpj.13025 pmid: 26366992
[18] Xia K, Ou X, Tang H, Wang R, Wu P, Jia Y, Wei X, Xu X, Kang S H, Kim S K, Zhang M . Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol, 2015,208:790-802.
[19] Zhang S, Wu T, Liu S, Liu X, Jiang L, Wan J . Disruption of OsARF19 is critical for floral organ development and plant architecture in rice( Oryza sativa L.). Plant Mol Biol Rep, 2016,34:748-760.
doi: 10.1007/s11105-015-0962-y
[20] Horiguchi G, Ferjani A, Fujikura U, Tsukaya H . Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42.
doi: 10.1007/s10265-005-0232-4 pmid: 16284709
[21] Horvath B M, Magyar Z, Zhang Y, Hamburger A W, Bako L, Visser R G, Bachem C W, Bogre L . EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J, 2006,25:4909-4920.
[22] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-718.
doi: 10.1038/ng.2612 pmid: 23583977
[23] Nakamura A, Matsuoka M . The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006,140:580-590.
[24] Andrzej B . Metabolism of brassinosteroids in plants. Plant Physiol Biochem, 2007,45:95-107.
doi: 10.1016/j.plaphy.2007.01.002 pmid: 17346983
[25] Hong Z, Ueguchitanaka M, Shimizusato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
doi: 10.1046/j.1365-313X.2002.01438.x
[26] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S . Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73:676-688.
doi: 10.1111/tpj.12071 pmid: 23146214
[27] Gui J, Zheng S, Liu C, Shen J, Li J, Li L . OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell, 2016,38:201-214.
doi: 10.1016/j.devcel.2016.06.011 pmid: 27424498
[28] Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z, Zhu J, Lucas W J, Wang Z, Zhang D . Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J, 2015,82:570-581.
doi: 10.1111/tpj.12820 pmid: 25754973
[29] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y . Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007,104:13839-13844.
doi: 10.1073/pnas.0706386104
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!