欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 46-54.doi: 10.3724/SP.J.1006.2019.82022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻类病斑早衰突变体lmps1的表型鉴定与基因定位

夏赛赛,崔玉,李凤菲,谭佳,谢园华,桑贤春,凌英华()   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室, 重庆 400715
  • 收稿日期:2018-04-25 接受日期:2018-08-20 出版日期:2018-09-18 网络出版日期:2018-09-18
  • 通讯作者: 凌英华
  • 基金资助:
    本研究由重庆市社会事业与民生保障科技创新专项项目(cstc2016shms-ztcx80012);中央高校基本科研业务费专项资金资助(XDJK2016A013)

Phenotypic characterizing and gene mapping of a lesion mimic and premature senescence 1 (lmps1) mutant in rice (Oryza sativa L.)

Sai-Sai XIA,Yu CUI,Feng-Fei LI,Jia TAN,Yuan-Hua XIE,Xian-Chun SANG,Ying-Hua LING()   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400715, China
  • Received:2018-04-25 Accepted:2018-08-20 Published:2018-09-18 Published online:2018-09-18
  • Contact: Ying-Hua LING
  • Supported by:
    This study was supported by the project of Chongqing Science and Technology Commission Grants(cstc2016shms-ztcx80012);Fundamental Research Funds for the Central Universities(XDJK2016A013)

摘要:

经甲基磺酸乙酯(EMS)诱变优良籼型水稻恢复系缙恢10号, 获得一个稳定遗传的水稻类病斑早衰突变体lmps1 (lesion mimic and premature senescence 1)。该突变体苗期表型正常, 分蘖早期出现褐色类病斑, 且斑点数目随植株生长而增多, 孕穗期叶片开始萎黄衰老。与野生型相比, 突变体lmps1的每穗总粒数下降8% (P<0.05), 株高、穗长、有效穗数、每穗实粒数、结实率以及千粒重分别下降14.3%、24.3%、27.2%、50%、45.7%与14.5%, 差异均达极显著水平(P<0.01)。遮光处理表明, 突变体lmps1的类病斑性状受光照诱导。孕穗期叶片光合色素含量下降且光合效率降低, H2O2含量增加, 抗氧化酶SOD和CAT的活性显著降低。透射电镜观察结果显示, 突变体lmps1叶肉细胞中叶绿体数目减少, 叶绿体的类囊体片层结构损伤降解。qRT-PCR结果显示, 突变体lmps1中防卫反应相关基因除POX22.3表达量降低外, POC1PALPBZ1PR1NPR1PR5表达量均极显著高于野生型。遗传分析表明突变体lmps1的类病斑早衰性状受1对隐性核基因控制, 利用西农1A与突变体lmps1杂交所得F2群体中的突变株, 将目标基因定位于第7染色体长臂端粒附近约167.3 kb的物理区段内。

关键词: 水稻(Oryza sativa L.), 类病斑早衰突变体 (lmps1), 表型鉴定, 基因定位

Abstract:

An elite rice indica restorer line, Jinhui 10 was chemically mutated with ethyl methane sulfonate (EMS). A novel and stable mutant, lesion mimic and premature senescence 1 (lmps1) was identified from the descendant library. The growth and development of lmps1 plant was normal at seedling stage, but its leaves began to exhibit brown spots at the beginning of tillering stage, and the number of the spots increased as the plant growing up. When mutant plant entered booting stage, leaves started to wilt and became yellowish, then exhibited premature senescence. Compared with wild type, grains per panicle of lmps1 decreased by 8%, significantly lower than that of wild type (P < 0.05). Besides, plant height, panicle length, effective panicle number, filled grain number per panicle, seed setting rate, and 1000-grain weight of lmps1 correspondingly decreasedly 14.3%, 24.3%, 27.2%, 50.0%, 45.7%, and 14.5%, statistically lower than those of wild type (P < 0.01). The shading treatment suggested that the mutant performance of lmps1 was light induced. Within the cells of lmps1, both of photosynthetic pigment content and photosynthetic efficiency decreased. At the same time, H2O2 content increased, and activities of protective enzymes, SOD and CAT, reduced in lmps1. The observation by transmission electronic microscope (TEM) demonstrated that chloroplast number reduced in lmps1, and the chloroplast thylakoid lamellar structure seriously damaged and degraded. As a result of qRT-PCR, the expression levels of POC1, PAL, PBZ1, PR1, NPR1, and PR5 were higher in lmps1 than in wild type, while that of POX22.3 was lower than that of wild type. The genetic analysis indicated that the lesion mimic and premature senescence of lmps1 was under the control of a recessive nuclear gene. Mapping result via F2 population derived from the cross between Xinong 1A and lmps1 showed that, the target gene was located in a 167.3 kb physical interval near the telomere of the long arm of chromosome 7 in rice (Oryza sativa L.).

Key words: rice (Oryza sativa L.), lesion mimic and premature senescence 1 (lmps1), phenotyping, gene mapping

图1

野生型(WT)与突变体lmps1的表型 A: 分蘖期WT与lmps1植株; B: 分蘖期WT与lmps1的叶片; C: 成熟期WT与lmps1植株; D: 成熟期WT与lmps1的叶片; 1: 倒一叶; 2: 倒二叶; 3: 倒三叶; 标尺=5 cm。"

表1

野生型与突变体lmps1之间的表型差异"

性状
Trait
野生型
Wild type
突变体
lmps1
lmps1较WT减少率
Reduction in lmps1 than in WT (%)
株高 Plant height (cm) 108.50±2.29 93.00±2.00** 14.3
穗长 Panicle length (cm) 26.15±0.55 19.80±1.03** 24.3
有效穗数 Effective panicle 9.62±1.31 7.00±1.07** 27.2
每穗总粒数 Grain number per panicle 161.34±6.78 148.42±13.40* 8.0
每穗实粒数 Filled grain number per panicle 133.48±6.36 66.27±7.66** 50.0
结实率 Seed setting rate (%) 82.75±2.51 44.97±5.95** 45.7
千粒重 1000-grain weight (g) 25.74±0.44 22.01±0.43** 14.5

图2

遮光对野生型(WT)和突变体lmps1叶片的影响 A: WT叶片; B: lmps1叶片; C: lmps1遮光1周后; D: lmps1遮光处理后复光1周后; 标尺=6 cm。"

图3

野生型(WT)与突变体lmps1孕穗期光合色素含量 A~D: 孕穗期WT与lmps1的倒一叶(A)、倒二叶(B)、倒三叶(C)和倒四叶(D)光合色素含量; E: WT光合色素含量; F: lmps1光合色素含量。条柱表示平均值, 误差线表示标准差; **表示在0.01水平上差异显著; E, F图中标的不同字母的柱值在0.05水平上差异显著。"

图4

孕穗期野生型(WT)与突变体lmps1功能叶的光合特性 A: WT和lmps1的净光合速率; B: WT和lmps1的气孔导度; C: WT和lmps1的细胞间CO2浓度; D: WT和lmps1的蒸腾速率。条柱表示平均值, 误差线表示标准差; **表示在0.01水平上差异显著, *表示在0.05水平上差异显著。"

图5

孕穗期野生型(WT)和突变体lmps1的叶肉细胞超微结构 A: WT倒四叶尖; B、C、D: WT叶尖细胞超微结构; E: lmps1倒四叶尖; F、G、H: lmps1叶尖细胞超微结构; I: WT倒四叶中部; J、K、L: WT叶中部细胞超微结构; M: lmps1倒四叶中部; N、O、P: lmps1叶中部细胞超微结构; Chl: 叶绿体; Os: 嗜锇小体; TM: 类囊体膜; N: 细胞核。标尺: 2 μm (A, D), 1 μm (B, E), 200 nm (C, F)。"

图6

孕穗期野生型(WT)和突变体lmps1的抗氧化酶活性及H2O2含量 A~C: WT和lmps1的过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性; D: WT和lmps1各功能叶过氧化氢(H2O2)含量。条柱表示平均值, 误差线表示标准差; **表示在0.01水平上差异显著, *表示在0.05水平上差异显著。"

图7

LMPS1基因在第7染色体的分子定位 A: LMPS1基于F2群体的初定位; B: LMPS1的精细定位。"

图8

野生型(WT)和突变体lmps1相关基因的表达量 A: LMPS1精细定位物理区间内部分基因的表达量; B: 抗病相关基因相对表达量。条柱表示平均值, 误差线表示标准差; *表示0.05水平上差异显著; **表示在0.01水平上差异显著。"

[1] Johal G S, Hulbert S H, Briggs S P . Disease lesion mimics of maize:a model for cell death in plants. BioEssays, 1995,17:685-692.
doi: 10.1002/bies.950170805
[2] Walbot V . Maize mutants for the 21st century. Plant Cell, 1991,3:851-856.
doi: 10.2307/3869149
[3] Persson M, Falk A, Dixelius C . Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1. Mol Plant Pathol, 2009,10:587-598.
[4] Brodersen P, Petersen M, Pike H M, Olszak B, Skov S, Odum N, Jørgensen L B, Brown R E, Mundy J . Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev, 2002,16:490-502.
doi: 10.1101/gad.218202
[5] Shang J, Tao Y, Chen X, Chen X W, Zou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang Z K, Xu J C, Cheng Z K, Wan J M, Zhu J M . Identification of a new rice blast resistance gene,Pid3, by genomewide comparison of paired nucleotide-binding site- leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009,182:1303-1311.
doi: 10.1534/genetics.109.102871 pmid: 19506306
[6] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S . Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007,63:847-860.
doi: 10.1007/s11103-006-9130-y pmid: 17273822
[7] Badigannavar A M, Kale D M, Eapen S, Murty G S . Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002,93:50-52.
doi: 10.1093/jhered/93.1.50 pmid: 12011176
[8] Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L . Spotted-leaf mutants of rice (Oryza sativa). Rice Sci, 2010,17:247-256.
[9] 刘宝玉, 刘军化, 杜丹, 闫萌, 郑丽媛, 吴雪, 桑贤春, 张长伟 . 水稻类病斑突变体spl34的鉴定与基因精细定位. 作物学报, 2018,44:332-342.
Liu B Y, Liu J H, Du D, Yan M, Zheng L Y, Wu X, Sang X C, Zhang C W . Identification and gene mapping of a lesion mimic mutant spl34 in rice(Oryza sativa L.). Acta Agron Sin, 2018,44:332-342 (in Chinese with English abstract).
[10] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C . Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact, 2005,18:511-520.
doi: 10.1094/MPMI-18-0511
[11] Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C . Semi-dominant mutations in the CC-NB-LRR-type R gene,NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011,66:996-1007.
doi: 10.1111/j.1365-313X.2011.04557.x pmid: 21418352
[12] Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H . Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 2007,19:2940-2951.
[13] Liao Y X, Bai Q, Xu P Z, Wu T K, Guo D M, Peng Y B, Zhang H Y, Deng X S, Chen X Q, Luo M, Ali A, Wang W M, Wu X J . Mutation in rice abscisic acid2 results in cell death, Enhanced disease-resistance, altered seed dormancy and development. Front Plant Sci, 2018, 9: https://doi.org/10.3389/fpls. 2018. 00405.
doi: 10.3389/fpls.2018.00405 pmid: 29643863
[14] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh, H J, Yoo S C, Paek N C . The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013,74:122-133.
[15] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K . Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010,285:11308-11313.
doi: 10.1074/jbc.M109.091371 pmid: 2857009
[16] Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C . RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011,38:29-37.
[17] Liu X Q, Li F, Tang J Y, Wang W H, Zhang F X, Wang G D, Chu J F, Yan C Y, Wang T Q, Chu C C, Li C Y . Activation of the Jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS One, 2012,7:e50089.
doi: 10.1371/journal.pone.0050089 pmid: 3510209
[18] Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Huang Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S . Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot, 2015,66:973-987.
doi: 10.1093/jxb/eru456 pmid: 4321554
[19] Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J . SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice(Oryza sativa). New Phytol, 2010,185:258-274
[20] Jin B, Zhou X, Jiang B, Gu Z, Zhang P, Qian Q, Chen X, Ma B . Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance. Rice(N Y), 2015,8:18.
doi: 10.1186/s12284-015-0052-7 pmid: 26029330
[21] Wang L, Pei Z, Tian Y, He C . OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 2005,18:375-384.
doi: 10.1094/MPMI-18-0375 pmid: 15915636
[22] Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C . Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012,158:451-464.
doi: 10.1104/pp.111.184531 pmid: 22106097
[23] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K . A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002,99:7530-7535.
doi: 10.1073/pnas.112209199 pmid: 12032317
[24] Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L . Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004,16:2795-2808.
doi: 10.1105/tpc.104.025171 pmid: 15377756
[25] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R . The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015,290:611-622.
[26] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S . Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009,28:431-439.
[27] Wellburn A R . The spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994,144:307-313.
[28] Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H . Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice(Oryza sativa L.). Chin Sci Bull, 2010,55:2517-2521.
doi: 10.1007/s11434-010-4013-7
[29] Panaud O, Chen X, McCouch S R . Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice(Oryza sativa L.). Mol Genet Genomics, 1996, 252:597-607.
doi: 10.1007/BF02172406 pmid: 8914521
[30] Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R . Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.). Genes Genet Syst, 2012,87:169-179.
doi: 10.1266/ggs.87.169 pmid: 22976392
[31] Li Z, Zhang Y, Liu L, Liu Q, Bi Z, Yu N, Cheng S, Cao L . Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice(Oryza sativa). Plant Physiol Biochem, 2014,80:300-307.
[32] Xing Y D, Du D, Xiao Y H, Zhang T Q, Chen X L, Feng P, Sang X C, Wang N, He G H . Fine mapping of a new lesion mimic and early senescence 2 (lmes2) mutant in rice. Crop Sci, 2016,56:1550-1560.
[33] 林艳, 陈在杰, 田大刚, 杨广阔, 杨绍华, 刘华清, 陈松彪, 王锋 . 水稻类病斑及早衰突变体lms1的鉴定及基因初步定位. 福建农业学报, 2014,29(1):29-34.
doi: 10.3969/j.issn.1008-0384.2014.01.007
Lin Y, Chen Z J, Tian D G, Yang G K, Yang S H, Liu H Q, Chen S B, Wang F . Identification and gene mapping of a lesion mimic and senescence mutant lms1 in rice. Fujian J Agric Sci, 2014,29(1):29-34 (in Chinese with English abstract).
doi: 10.3969/j.issn.1008-0384.2014.01.007
[34] Jwa N S, Agrawal G K, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R . Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Biochem, 2006,44:261-273.
doi: 10.1016/j.plaphy.2006.06.010 pmid: 16806959
[35] Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K . Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet, 1999,98:1138-1145.
doi: 10.1007/s001220051178
[36] Blilou I, Ocampo J A, Garcia-Garrido J M . Induction of Ltp(lipid transfer protein) and Pal, 2000,51:1969-1977.
[37] Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D . Systemic acquired resistance. Plant Cell, 1996,8:1809-1819.
doi: 10.1105/tpc.8.10.1809
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!