欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1796-1805.doi: 10.3724/SP.J.1006.2019.91025

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析

伦珠朗杰1,2,3,4,5,李慧慧5,郭刚刚5,其美旺姆2,3,高丽云2,3,唐亚伟2,3,尼玛扎西2,4,达瓦顿珠2,3,*(),卓嘎1,*()   

  1. 1 西藏农牧学院, 西藏林芝 860000
    2 省部共建青稞和牦牛种质资源与遗传改良国家重点实验室, 西藏拉萨 850002
    3 西藏自治区农牧科学院农业研究所, 西藏拉萨 850002
    4 西藏自治区农牧科学院, 西藏拉萨 850002
    5 中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2019-03-20 接受日期:2019-06-22 出版日期:2019-12-12 网络出版日期:2019-07-15
  • 通讯作者: 达瓦顿珠,卓嘎
  • 作者简介:伦珠朗杰, E-mail: lhundrupnamgyal@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31660299);西藏自治区重大专项(XZ201801NA01);西藏农牧学院研究生创新计划资助项目YJS2017-07(502000114)

Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.)

Lhundrupnamgyal1,2,3,4,5,Hui-Hui LI5,Gang-Gang GUO5, Chemiwangmo2,3,Li-Yun GAO2,3,Ya-Wei TANG2,3, Nyematashi2,4, Dawadondrup2,3,*(), Dolkar1,*()   

  1. 1 Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet 860000, China
    2 State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
    3 Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850002, China
    4 Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850002, China
    5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-03-20 Accepted:2019-06-22 Published:2019-12-12 Published online:2019-07-15
  • Contact: Dawadondrup, Dolkar
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660299);the Tibet Department of Major Projects(XZ201801NA01);the Tibet Agricultural and Animal Husbandry College Graduate Innovation Program funded project YJS2017-07(502000114)

摘要:

为提高青稞种质资源的利用效率并筛选优异杂交亲本, 分别在西藏林芝和拉萨两地的春播和秋播环境下对1605份青稞种质资源进行冬春性鉴定和抽穗期多样性分析。设拉萨春播2个播期, 即正常春播I和晚10 d春播II, 以2个播期的抽穗期变化作为冬春性区别依据。结果表明, 96.2%的西藏青稞地方品种为春性, 在西藏3个生态区均有分布, 冬性品种仅有3.8%, 且主要分布在以林芝为主的藏东南生态区; 抽穗期的Shannon-Wiener’s多样性分析表明, 春播条件下抽穗期多样性高于秋播, 拉萨春播条件下抽穗期多样性最高, 林芝春播次之, 林芝秋播最低; 在相同环境下, 地方品种的多样性高于育成品种; 在环境稳定性分析中, 368份春性地方品种和21份育成品种在不同环境中抽穗期较为稳定, 其中康青3号在两地所有参试品种中抽穗期稳定性最高。本研究为全面理解西藏青稞资源的冬春性、抽穗期多样性和环境稳定性提供了参考, 为广适应性青稞品种培育筛选出环境稳定性佳的亲本材料。

关键词: 青稞, 生长习性, 抽穗期, 多样性, 稳定性

Abstract:

To improve the utilization of Tibetan barley germplasm and select appropriate parents in hybridization breeding, evaluated the growth habit and heading date diversity of 1605 Tibetan barley germplasm under the spring and autumn sowing conditions in Nyingchi and Lhasa, Tibet. The growth habit was determined by the difference in heading date observed in two spring sowing dates in Lhasa, i.e. normal spring sowing I and 10 days later of spring sowing II, showing that 96.2% of the landraces were spring barley distributed in all three ecological regions; 3.8% of the landraces were the winter barley accessions originated mainly from the southeastern ecological region of Tibet. Shannon-Wiener’s analysis showed that the heading date diversity was higher under spring-sown environment than under autumn-sown environment. The heading date diversity was highest in Lhasa region with spring sowing, moderate in Nyingchi spring-sown environment, and lowest in Nyingchi autumn-sown environment. In the same environment, landraces had higher diversity than modern varieties. A total of 368 spring-type landraces and 21 varieties were stable in heading date diversity across environments, and the cultivar Kangqing 3 had the highest stability among all tested materials. This study helps to further understand the growth habits, heading dates diversity and environmental stability of barley resources in Tibet, and provides useful information for the development of broad-adapted barley varieties.

Key words: barley, growth habit, heading date diversity, stability

图1

拉萨冬春性鉴定表型"

表1

材料来源及品种类型"

来源
Origin
类型
Type
品种数
No. of accessions
合计
Total
比例
Proportion (%)
拉萨 Lhasa 春性地方品种 Spring landrace (SL) 125 155 9.64
冬性地方品种 Winter landrace (WL) 3
春性育成品种 Spring variety (SV) 21
冬性育成品种 Winter variety (WV) 6
山南 Lhoka 春性地方品种 Spring landrace (SL) 355 377 23.45
冬性地方品种 Winter landrace (WL) 12
春性育成品种 Spring variety (SV) 10
日喀则 Shigatse 春性地方品种 Spring landrace (SL) 538 573 35.63
冬性地方品种 Winter landrace (WL) 6
春性育成品种 Spring variety (SV) 29
昌都 Chamdo 春性地方品种 Spring landrace (SL) 275 282 17.60
冬性地方品种 Winter landrace (WL) 6
春性育成品种 Spring variety (SV) 1
林芝 Nyingchi 春性地方品种 Spring landrace (SL) 114 147 9.14
冬性地方品种 Winter landrace (WL) 30
春性育成品种 Spring variety (SV) 2
冬性育成品种 Winter variety (WV) 1
阿里 Ngari 春性地方品种 Spring landrace (SL) 40 40 2.49
那曲 Nagqu 春性地方品种 Spring landrace (SL) 1 1 0.06
西藏其他地区 Other Tibetan areas 春性育成品种 Spring variety (SV) 30 30 1.87

图2

青稞冬春性资源的地理分布 灰色线条表示雅鲁藏布江流域, 饼图大小表示在总材料中所占的比重。"

图3

青稞资源在3个环境的抽穗期分布 黑色虚线表示抽穗期平均值, SL: 春性地方品种; SV: 春性育成品种; WL: 冬性地方品种; WV:冬性育成品种。2017年林芝秋播, 2018年林芝春播, 2018年拉萨春播。"

表2

青稞资源的抽穗期性状变化及分布特征"

试验
Trial
品种类型
Variety type
品种数
No. of samples
平均值 Mean±SD 变幅
Range
变异系数CV (%) 多样性指数Shannon H°
2017年林芝秋播2017 Nyingchi-A 春性地方品种 Spring landrace (SL) 1332 174.54±9.33 160.00-204.00 5.53 1.33
冬性地方品种 Winter landrace (WL) 55 182.86±10.04 161.00-200.00 5.49 1.00
春性育成品种 Spring variety (SV) 93 174.40±6.68 160.00-202.00 3.83 1.13
冬性育成品种 Winter variety (WV) 7 185.33±8.36 180.00-202.00 4.51 0.56
2018年林芝春播2018 Nyingchi-S 春性地方品种 Spring landrace (SL) 1448 73.16±6.33 59.00-94.00 8.65 1.37
冬性地方品种 Winter landrace (WL) 52 84.72±6.39 64.00-97.00 7.55 1.25
春性育成品种 Spring variety (SV) 92 75.78±5.50 62.00-85.00 7.26 0.96
冬性育成品种 Winter variety (WV) 6 80.60±7.09 71.00-88.00 8.80 0.73
2018年拉萨春播2018 Lhasa-S 春性地方品种 Spring landrace (SL) 1448 68.19±5.62 53.00-85.00 8.36 1.41
冬性地方品种 Winter landrace (WL) 4 79.00±9.17 69.00-87.00 11.60 1.15
春性育成品种 Spring variety (SV) 93 70.18±4.19 59.00-81.00 6.04 0.64
冬性育成品种 Winter variety (WV) 4 73.75±3.28 71.00-75.00 4.45 0.69

图4

不同品种在秋播和春播条件下抽穗期的比较 SL: 春性地方品种; SV: 春性育成品种; WL: 冬性地方品种; WV: 冬性育成品种。2017 Nyingchi-A: 2017年林芝秋播; 2018 Nyingchi-S: 2018年林芝春播; 2018 Lhasa-S: 2018年拉萨春播。不同字母表示处理间差异显著水平(P < 0.01)。"

图5

春播条件下不同环境间抽穗期的比较 SL: 春性地方品种; SV: 春性育成品种; WL: 冬性地方品种; WV:冬性育成品种。2018 Nyingchi-S: 2018年林芝春播; 2018 Lhasa-S: 2018年拉萨春播。不同字母表示处理间差异显著水平(P<0.01)。"

图6

不同播期和环境间抽穗期的相关性 A、B、C表示播期间或环境间的相关系数。2017 Nyingchi-A: 2017年林芝秋播; 2018 Nyingchi-S: 2018年林芝春播; 2018 Lhasa-S: 2018年拉萨春播。"

图7

不同播期抽穗期值标准化的五个等级的变化频率 I: 早抽穗; II: 偏早抽穗; III:中间型; IV: 偏晚抽穗; V: 晚抽穗。2017 Nyingchi-A: 2017年林芝秋播; 2018 Nyingchi-S: 2018年林芝春播; 2018 Lhasa-S: 2018年拉萨春播。"

图8

不同品种在不同播期和环境条件下抽穗期的稳定性分析 SL: 春性地方品种; SV: 春性育成品种; WL: 冬性地方品种; WV: 冬性育成品种。I: 早抽穗; II: 偏早抽穗; III: 中间型; IV: 偏晚抽穗; V: 晚抽穗。a: 2017年林芝秋播; b: 2018年林芝春播; c: 2018年拉萨春播。红色数字表示3个环境内共有的品种数。"

图9

青稞主要育成品种在不同播期和环境之间抽穗期的稳定性分析 I: 早抽穗; II: 偏早抽穗; III: 中间型; IV: 偏晚抽穗; V: 晚抽穗。2017 Nyingchi-A: 2017年林芝秋播; 2018 Nyingchi-S: 2018年林芝春播; 2018 Lhasa-S: 2018年拉萨春播。"

[1] Pourkheirandish M, Komatsuda T . The importance of barley genetics and domestication in a global perspective. Ann Bot, 2007,100:999-1008.
doi: 10.1093/aob/mcm139
[2] Turner A, Beales J, Faure S, Dunford R P, Laurie D A . The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005,310:1031-1034.
doi: 10.1126/science.1117619
[3] Jones H, Leigh F J, Mackay I, Bower M A, Smith L M, Charles M P, Jones G, Jones M K, Brown T A, Powell W . Population based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol, 2008,25:2211-2219.
doi: 10.1093/molbev/msn167
[4] Ibrahim A, Harrison M, Meinke H, Fan Y, Johnson P, Zhou M . A regulator of early flowering in barley (Hordeum vulgare L.). PLoS One, 2018,13:e0200722.
doi: 10.1371/journal.pone.0200722
[5] Doebley J F, Gaut B S, Smith B D . The molecular genetics of crop domestication. Cell, 2006,127:1309-1321.
doi: 10.1016/j.cell.2006.12.006
[6] Sang T . Genes and mutations underlying domestication transitions in grasses. Plant Physiol, 2009,149:63-70.
doi: 10.1104/pp.108.128827
[7] Trevaskis B, Bagnall D J, Ellis M H, Peacock W J, Dennis E S . MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA, 2003,100:13099-13104.
doi: 10.1073/pnas.1635053100
[8] Saisho D, Ishii M, Hori K, Sato K . Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol, 2011,52:775-784.
doi: 10.1093/pcp/pcr046
[9] Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie D A, Kato K . Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat(Triticum aestivum L.), and their effect on heading time. Mol Breed, 2012,31:27-37.
doi: 10.1007/s11032-012-9765-0
[10] Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R . Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet, 2012,44:1388-1392.
doi: 10.1038/ng.2447
[11] Laurie D A, Pratchett N, Bezant J H, Snape J W . RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome, 1995,38:575-585.
doi: 10.1139/g95-074
[12] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J . Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003,100:6263-6268.
doi: 10.1073/pnas.0937399100
[13] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J . The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004,303:1640-1644.
doi: 10.1126/science.1094305
[14] Yan L L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J . The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006,103:19581-19586.
doi: 10.1073/pnas.0607142103
[15] Faure S, Higgins J, Turner A, Laurie D A . The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics, 2007,176:599-609.
doi: 10.1534/genetics.106.069500
[16] Distelfeld A, Li C, Dubcovsky J . Regulation of flowering in temperate cereals. Curr Opin Plant Biol, 2009,12:178-184.
doi: 10.1016/j.pbi.2008.12.010
[17] 卢良恕 . 中国大麦学. 北京: 中国农业出版社, 1996.
Lu L S. Chinese Barley. Beijing: China Science and Technology Press, 1996. pp 3-7(in Chinese).
[18] 胡颂杰 . 西藏农业概论. 成都: 四川科学技术出版社, 1995.
Hu S J. An Introduction of Tibet Agriculture. Chengdu: Sichuan Science and Technology Press, 1995 ( in Chinese)
[19] Tashi N. Food preparation from hull-less barley in Tibet. In: Food Barley—Importance, Uses and Local Knowledge: Proc. International Workshop on Food Barley Improvement, 2002. Grando S, Macpherson H G, eds. ICARDA, Aleppo, Syria, 2005.
[20] 朱睦元, 张京 . 大麦(青稞)营养分析及其食品加工. 杭州: 浙江大学出版社, 2015.
Zhu M Y, Zhang J. Barley Nutritional Analysis and Food Processing. Hangzhou: Zhejiang University Press, 2015 (in Chinese).
[21] 马得泉 . 中国西藏大麦遗传资源. 北京: 中国农业出版社, 2000.
Ma D Q. Genetic Resources of Tibetan Barley in China. Beijing: China Science and Technology Press, 2000 (in Chinese).
[22] 张京, 曹永生 . 我国大麦基因库的群体结构和表型多样性研究. 中国农业科学, 1998,32(4):20-26.
Zhang J, Cao Y S . Population Structure and Phenotypic Diversity of Barley Gene Bank in China. Sci Agric Sin, 1998 (in Chinese with English abstract).
[23] 冯宗云 . 徐廷文大麦学术文集. 成都四川科学技术出版社, 2006.
Feng Z Y. Xu Tingwen's Work for Barley Science. Chengdu: Sichuan Science and Technology Press, 2006 ( in Chinese)
[24] 达瓦顿珠. 中国大麦低温春化和光周期基因单倍型及表型关联分析. 中国农业科学院研究生院博士学位论文, 北京, 2015. pp 25-28.
Dawadondrop. Haplotypes and Phenotypic Association Analsis of Vernalization and Photoperiod Genes in Chinese Barley in china. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. pp 25-28 (in Chinese with English abstract).
[25] Alqudah A M, Sharma R, Pasam R K, Graner A, Kilian B, Schnurbusch T . Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One, 2014,9:e113120.
doi: 10.1371/journal.pone.0113120
[26] Alqudah A M, Schnurbusch T . Heading date is not flowering time in spring barley. Front Plant Sci, 2017,8:896.
doi: 10.3389/fpls.2017.00896
[27] Hemming M N, Fieg S, Peacock W J, Dennis E S, Trevaskis B . Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genom, 2009,282:107-117.
doi: 10.1007/s00438-009-0449-3
[28] Dondup D, Dong G Q, Xu D D, Zhang L S, Zha S, Yuan X M, Tashi N, Zhang J, Guo G G . Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm. Mol Breed, 2016,36:11
doi: 10.1007/s11032-016-0434-6
[29] Shannon C E, Weaver W. The Mathematical Theory of Communication. Urbana: University of Illinons Press, 1949.
[30] 王建康 . 数量遗传学. 北京: 科学出版社, 2017.
Wang J K. Quantitative Genetics. Beijing: Science Press, 2017 (in Chinese).
[31] 强小林 . 西藏青稞品种系谱及其分析. 中国作物学会大麦专业委员会. 中国大麦文集. 北京: 中国农业科技出版社, 1986. pp 189-195.
Qiang X L. The pedigree and its analysis of barley varieties in Tibet. In: Barley Professional Committee of China Crop Society. Barley Science in China. Beijing: China Agricultural Science and Technology Press, 1986. pp 189-195(in Chinese).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[5] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[9] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[10] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[11] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[12] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[13] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[14] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[15] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!