欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 381-389.doi: 10.3724/SP.J.1006.2019.84105

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜皖油20号种子不同部位油脂合成的转录调控分析

张宇婷,鲁少平,金诚,郭亮()   

  1. 华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2018-07-28 接受日期:2018-12-24 出版日期:2019-03-12 网络出版日期:2019-01-03
  • 通讯作者: 郭亮
  • 基金资助:
    本研究由国家自然科学基金青年科学基金项目(31701458);中央高校基本科研业务费专项资金资助项目资助(2662015PY090)

Transcriptional regulation of oil biosynthesis in different parts of Wanyou 20 (Brassica napus) seeds

Yu-Ting ZHANG,Shao-Ping LU,Cheng JIN,Liang GUO()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2018-07-28 Accepted:2018-12-24 Published:2019-03-12 Published online:2019-01-03
  • Contact: Liang GUO
  • Supported by:
    This study was supported by the National Science Foundation for Young Scientists of China(31701458);Fundamental Research Funds for the Central Universities(2662015PY090)

摘要:

甘蓝型油菜是主要的油料作物之一, 种子含油量一般在35%~50%。油脂主要储存于油菜种子胚中, 胚主要由子叶[包括外子叶(OC)和内子叶(IC)和胚轴(EA)]组成。低芥酸油菜品种皖油20号(WY20)种子不同部位的含油量存在显著差异。WY20的胚中, OC含油量最高, EA含油量最低。同时, 脂肪酸组成在种子不同部位也存在差异, EA中棕榈酸(C16:0)、亚油酸(C18:2)及二十碳酸(C20:0)的比例均显著高于子叶, 特别是C16:0在EA中的比例约为子叶的2倍。而油酸(C18:1)及二十碳烯酸(C20:1)在子叶中的比例均显著高于EA。硬脂酸(C18:0)在OC中含量最低, 在IC和EA中无差别。亚麻酸(C18:3)则在OC中含量最高, 在IC和EA中无差异。对发育34d种子的IC、OC和EA进行转录组分析, 将三个部位中基因表达定量分析的结果两两比较后共发掘出7192个差异表达基因, 其中OC和IC之间差异表达基因数目较少, 子叶和EA间有较多的差异表达基因。子叶和胚轴中的差异表达基因富集在光合作用、脂肪酸代谢和叶绿素合成等生物学过程。基因功能注释显示, 差异表达基因中有355个和脂质代谢相关, 且多集中在质体中脂肪酸从头合成途径。本研究表明油脂合成途径关键基因的差异调控是造成油菜种子不同部位含油量和脂肪酸组成差异的主要因素。

关键词: 甘蓝型油菜, 种子不同部位, 含油量, 脂肪酸组成, 转录调控

Abstract:

Brassica napus is one of the main oil crops and the seed oil content is generally between 35% and 50%. Oil is mainly stored in the seed embryo. Embryo is composed of cotyledons (including outer and inner cotyledons) and embryonic axis. The oil content and fatty acid composition of different parts of low erucic Brassica napus WY20’s seed were analyzed. There was a significant difference in oil content in different parts of the seed. The oil content in the outer cotyledon was the highest while embryonic axis had the lowest oil content. At the same time, the fatty acid composition also showed significant difference in different parts of the seed. The ratio of C16:0, C18:2, and C20:0 in embryonic axis was significantly higher than that in cotyledon. The ratio of C16:0 in the embryonic axis was about twice more than that of the cotyledons. The ratio of C18:1 and C20:1 in cotyledons was significantly higher than that in embryonic axis. C18:0 had the lowest content in the outer cotyledon and no difference in the inner cotyledons and embryonic axis. C18:3 had the highest content in the outer cotyledons and no difference between inner cotyledons and embryonic axis. Transcriptome analysis was performed for the inner cotyledon, outer cotyledon and embryonic axis of the 34-day-old seed. A total of 7192 differentially expressed genes (DEGs) were identified after pairwise comparison of gene expression of the three parts. There were much fewer DEGs between cotyledons and more DEGs between cotyledon and embryonic axis. These DEGs were enriched in biological processes such as photosynthesis, fatty acid metabolism and chlorophyll metabolism. Gene function annotations revealed that there were 355 genes involved in lipid metabolism, especially in the de novo fatty acid biosynthesis in plastid. This study suggests that transcriptional regulation of key genes involved in oil biosynthesis results in different oil contents and fatty acid compositions in different parts of seed in Brassica napus.

Key words: Brassica napus, different seed parts, oil content, fatty acid composition, transcriptional regulation

图1

甘蓝型油菜WY20种子不同部位含油量和脂肪酸组成 A: 显微镜明视野下WY20种子部位; B: 种子不同部位含油量; C: 种子不同部位重量百分比; D: 种子不同部位脂肪酸组成; E: 整颗种子脂肪酸组成。"

图2

3个种子部位差异表达基因分布情况 A: 样本间PCA分析; B: IC、OC和EA差异表达基因数目及百分比; C:差异表达基因维恩图。"

图3

油菜胚的3个部位差异表达基因GO功能分布 A: IC和OC差异表达基因功能分布; B: IC和EA差异表达基因功能分布; C: OC和EA差异表达基因功能分布。"

表1

甘蓝型油菜皖油20种子不同部位油脂合成差异表达基因"

基因名
Gene ID
注释描述
Annotation description
蛋白家族缩写
Protein family abbreviations
分组
Group
BnaA03g13590D Fatty acid desaturase 3 FAD3 EA-IC-OC
BnaC03g16520D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaC04g14820D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaC04g40760D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaA04g17150D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaAnng09250D Fatty acid desaturase 2 FAD2 EA-IC/EA-OC
BnaA02g11570D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaA03g23490D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaC03g27860D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaCnng57830D Hydroxysteroid dehydrogenase 1 OBO EA-IC
BnaA09g02110D Oleosin OBO EA-OC
BnaA03g20420D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA01g32860D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaC03g24420D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaC09g41580D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA10g18080D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA05g03490D Stearoyl-acyl-carrier-protein desaturase SAD EA-OC
BnaC04g03030D Stearoyl-acyl-carrier-protein desaturase SAD EA-OC
BnaC09g19280D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaA02g24400D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaA06g36060D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaC06g35760D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaA07g31890D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaA07g21940D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaC06g22680D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC
BnaA04g07120D Acyl-ACP thioesterase FATA EA-IC/EA-OC
BnaCnng41490D Acyl-ACP thioesterase FATA EA-IC/EA-OC
BnaCnng00070D FATA acyl-ACP thioesterase FATA FATA EA-IC/EA-OC
BnaA07g05070D FATA acyl-ACP thioesterase FATA FATA EA-IC/EA-OC
BnaC03g75820D Ketoacyl-ACP Reductase KAR EA-IC/EA-OC
BnaA02g13310D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaA07g26670D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaC06g28830D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaC09g16320D Acyl carrier protein ACP EA-IC/EA-OC
BnaC09g03000D Acyl carrier protein ACP EA-IC/EA-OC
BnaA09g03610D Acyl carrier protein ACP EA-IC/EA-OC
BnaAnng23710D Acyl carrier protein ACP EA-OC
BnaC03g45040D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaC07g04330D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaA03g38220D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaAnng02240D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC/EA-OC
BnaC06g08280D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC/EA-OC
BnaC07g23030D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC
BnaA06g33300D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC
BnaAnng22560D Chloroplasticacetyl coenzyme A carboxylase BCCP EA-IC/EA-OC
BnaC09g42420D Biotin carboxyl carrier protein 2 BCCP EA-IC/EA-OC
BnaA03g02830D Thioesterase superfamily protein HAD EA-IC/EA-OC
BnaA02g00390D Thioesterase superfamily protein HAD EA-IC
BnaA07g20920D Long chain acyl-CoA synthetase 9 LACS9 EA-IC/EA-OC
BnaC06g20910D Long chain acyl-CoA synthetase 9 LACS9 EA-IC
BnaA01g17630D E3 component of pyruvate dehydrogenase complex LPD EA-IC/EA-OC
BnaCnng75250D Acetyl-CoA carboxylase ACCase EA-IC
BnaA05g12180D Acyl-carrier-protein MCMT EA-IC/EA-OC

图4

油脂合成相关差异表达基因在油脂代谢通路中的比较分析 维恩图中阴影代表差异表达基因的分布。红色数字表示蛋白家族对应基因TPM值的平均值在IC和EA间的比值, 绿色数字表示蛋白家族对应基因TPM值的平均值在OC和EA间的比值, 蓝色数字表示蛋白家族对应基因TPM值的平均值在IC和OC间的比值。编码蛋白质的基因: DHLAT: 二氢硫辛酰胺乙酰转移酶; LPD: 二氢硫辛酰胺脱氢酶; BCCP: 生物素羧基载体蛋白; ACCase: 乙酰辅酶a羧化酶; MCMT: 酰基载体蛋白; KASI: 3-酮酰基-酰基载体蛋白合酶I; KASII: 3-酮酰基-酰基载体蛋白合酶II; KASIII: 3-酮酰基-酰基载体蛋白合酶III; KAR: 酮脂酰还原酶; HAD: 硫酯酶蛋白; ENR: 烯酰ACP还原酶; ACP: 酰基载体蛋白; SAD: 硬脂酰-酰基载体蛋白脱饱和酶蛋白; FATA: FATA硫酯酶; FATB: FATB硫酯酶; LACS9: 长链酰基辅酶9; FAD2: 脂肪酸去饱和酶2; FAD3: 脂肪酸去饱和酶3; CPT: CDP胆碱-甘油二酯胆碱酯酶; PDCT: 磷脂酰胆碱-甘油二酯胆碱酯酶; GPAT: 磷酸甘油脂酰转移酶; PDAT: 磷脂-二酰甘油酰基转移酶; LPAAT: 溶血磷脂酸酰基转移酶; PAP: 磷脂酸磷酸酶; DGAT: 二酰甘油酰基转移酶; OBO: 油体蛋白; LTP: 脂质转运蛋白; ER: 内质网。"

[1] 沈金雄, 傅廷栋 . 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011,13(1):1-8
doi: 10.3969/j.issn.1008-0864.2011.01.01
Shen J X, Fu T D . Rapeseed production improvement and edible oil supply in China. J Agric Sci Technol, 2011,13(1):1-8 (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0864.2011.01.01
[2] 沈琼 . 中国油菜产业竞争优势与劣势分析. 农业产品加工, 2008, ( 8):57-59
doi: 10.3969/j.issn.1671-9646-B.2008.08.016
Shen Q . Analysis on competitive advantages and disadvantages of Chinese rapeseed industry. Acad Period Farm Products Proc, 2008, ( 8):57-59 (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-9646-B.2008.08.016
[3] 李殿荣, 田建华, 陈文杰, 张文学, 李永红, 王灏 . 甘蓝型油菜特高含油量育种技术与资源创新. 西北农业学报, 2011,20(12):83-87
doi: 10.7606/j.issn.1004-1389.2011.12.016
Li D R, Tian J H, Chen W J, Zhang W X, Li Y H, Wang H . Breeding technologies and germplasm innovation on extra- high-oil content in Brassica napus. Acta Agric Boreali-occident Sin, 2011,20(12):83-87 (in Chinese with English abstract)
doi: 10.7606/j.issn.1004-1389.2011.12.016
[4] 张永霞, 赵锋, 张红玲 . 中国油菜产业发展现状、问题及对策分析. 世界农业, 2015, ( 4):96-99
doi: 10.13856/j.cn11-1097/s.2015.04.022
Zhang Y X, Zhao F, Zhang H L . Analysis on the development status, problems and countermeasures of Chinese rapeseed industry. World Agric, 2015, (4):96-99 (in Chinese with English abstract)
doi: 10.13856/j.cn11-1097/s.2015.04.022
[5] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421
doi: 10.7505/j.issn.1007-9084.2014.03.020
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.03.020
[6] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄 . 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29:122-128
doi: 10.3969/j.issn.1003-0174.2014.06.023
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X . Comparison of nutritive quality between rapeseed oil and different edible vegetable oil—on the genetic improvement of rapeseed quality. J Chin Cereals Oils Assoc, 2014,29:122-128 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2014.06.023
[7] 熊源 . 植物油的种类与营养价值. 中国粮食经济, 2014, (6):72
doi: 10.3969/j.issn.1007-4821.2014.06.023
Xiong Y . Types and nutritional value of vegetable oil. Chin Food Economy, 2014, ( 6):72 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4821.2014.06.023
[8] Saha S, Enugutti B, Rajakumari S . Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic. diacylglycerol acyltransferase. Plant Physiol, 2006,141:1533-1543
doi: 10.1104/pp.106.084079 pmid: 1533943
[9] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in Plants. Metab Eng, 2002,4:12-21
doi: 10.1006/mben.2001.0204 pmid: 11800570
[10] Dahlqvist A, Stahl U, Lenman M . Phospholipid: diacylglycerol acyltransferase: An enzyme that catalyzes the Acyl-CoA-Independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA, 2000,97:6487-6492
doi: 10.1073/pnas.120067297
[11] 周奕华, 陈正华 . 植物种子中脂肪酸代谢途径的遗传调控与基因工程. 植物学通报, 1998,15(5):16-23
Zhou Y H, Chen Z H . Genetic manipulation and gene engineering of fatty acid metabolism in plant seeds. Chin Bull Bot, 1998,15(5):16-23 (in Chinese with English abstract)
[12] 周丹, 赵江哲, 柏杨, 张群, 井文, 章文华 . 植物油脂合成代谢及调控的研究进展. 南京农业大学学报, 2012,35(5):81-90
doi: 10.7685/j.issn.1000-2030.2012.05.009
Zhou D, Zhao J Z, Bai Y, Zhang Q, Jing W, Zhang W H . Research advance in triacylglycerol synthesis, metabolism and regulation in plants. 2012,35(5):81-90 (in Chinese with English abstract)
doi: 10.7685/j.issn.1000-2030.2012.05.009
[13] Bates P D, Stymne S, Ohlrogge J B . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069
[14] Horn P J, Korte A R, Neogi P B, Love E, Fuchs J, Strupat K, Borisjuk L, Shulaev V, Lee Y J, Chapman K D . Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell, 2012,24:622-636
doi: 10.1105/tpc.111.094581 pmid: 22337917
[15] Horn P J, Silva J E, Anderson D, Fuchs J, Borisjuk L, Nazarenus T J, Shulaev V, Cahoon E B, Chapman K D . Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Plant J, 2013,76:138-150
doi: 10.1111/tpj.12278 pmid: 23808562
[16] Sturtevant D, Dueñas M E, Lee Y J, Chapman K D . Three- dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: a spatial perspective of molecular heterogeneity. Biochim Biophys Acta, 2017,1862:268-281
doi: 10.1016/j.bbalip.2016.11.012 pmid: 27919665
[17] Woodfield H K, Sturtevant D, Borisjuk L, Munz E, Guschina I A, Chapman K, Harwood J L . Spatial and temporal mapping of key lipid species in Brassica napus seeds. Plant Physiol, 1998,173:1998-2009
doi: 10.1104/pp.16.01705 pmid: 28188274
[18] Sturtevant D, Lee Y J, Chapman K D . Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotech, 2015,37:53-60
doi: 10.1016/j.copbio.2015.10.004 pmid: 26613199
[19] Lu X, Chen D, Shu D . The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol, 2013,162:440-455
doi: 10.1104/pp.113.214874 pmid: 23478895
[20] He R, Salvato F, Park J J . A systems-wide comparison of red rice ( Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biol, 2014,14:46-66.
[21] Schuster S C . Next-generation sequencing transforms today’s biology. Nat Methods, 2008,5:16-18
doi: 10.1038/nmeth1156 pmid: 18165802
[22] Metzker M L . Sequencing technologies: the next generation. Nat Rev Genet, 2010,11:31-46
doi: 10.1038/nrg2626 pmid: 19997069
[23] Louisa F L . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2008,9:568-574
doi: 10.1038/nrg2423
[24] Troncoso-Ponce M A, Kilaru A, Cao X, Durrett T P, Fan J, Jensen J K, Thrower N A, Pauly M, Wilkerson C, Ohlrogge J B . Comparative deep transcriptional profiling of four developing oil seeds. Plant J, 2011,68:1014-1027
doi: 10.1111/j.1365-313X.2011.04751.x pmid: 21851431
[25] Dussert S, Morcillo F . Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol, 2013,162:1337-1358
doi: 10.1104/pp.113.220525
[26] Lu S P, Sturtevant D, Aziz M, Jin C, Li Q, Chapman K D, Guo L . Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant J, 2018,94:915-932
doi: 10.1111/tpj.13959 pmid: 29752761
[27] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578
doi: 10.1038/nprot.2012.016 pmid: 3334321
[28] Anders S, Pyl P T, Huber W . HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015,31:166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700
[29] Wang L, Feng Z, Wang X, Wang X, Zhang X . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26:136-138
doi: 10.1093/bioinformatics/btp612
[30] Love M I, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15:550-575
doi: 10.1186/s13059-014-0550-8 pmid: 25516281
[31] Baud S, Lepiniec L . Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010,49:235-249
doi: 10.1016/j.plipres.2010.01.001 pmid: 20102727
[32] Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay J O, Tschiersch H, Braun H P, Denolf P, Lambert B, Jakob P M, Rolletschek H . Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell, 2013,25:113-128
doi: 10.1105/tpc.113.111740 pmid: 23709628
[33] Napier J A, Haslam R P, Beaudoin F . Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr Opin Plant Biol, 2014,19:68-75
doi: 10.1016/j.pbi.2014.04.001 pmid: 4070482
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!