作物学报 ›› 2019, Vol. 45 ›› Issue (3): 381-389.doi: 10.3724/SP.J.1006.2019.84105
Yu-Ting ZHANG,Shao-Ping LU,Cheng JIN,Liang GUO()
摘要:
甘蓝型油菜是主要的油料作物之一, 种子含油量一般在35%~50%。油脂主要储存于油菜种子胚中, 胚主要由子叶[包括外子叶(OC)和内子叶(IC)和胚轴(EA)]组成。低芥酸油菜品种皖油20号(WY20)种子不同部位的含油量存在显著差异。WY20的胚中, OC含油量最高, EA含油量最低。同时, 脂肪酸组成在种子不同部位也存在差异, EA中棕榈酸(C16:0)、亚油酸(C18:2)及二十碳酸(C20:0)的比例均显著高于子叶, 特别是C16:0在EA中的比例约为子叶的2倍。而油酸(C18:1)及二十碳烯酸(C20:1)在子叶中的比例均显著高于EA。硬脂酸(C18:0)在OC中含量最低, 在IC和EA中无差别。亚麻酸(C18:3)则在OC中含量最高, 在IC和EA中无差异。对发育34d种子的IC、OC和EA进行转录组分析, 将三个部位中基因表达定量分析的结果两两比较后共发掘出7192个差异表达基因, 其中OC和IC之间差异表达基因数目较少, 子叶和EA间有较多的差异表达基因。子叶和胚轴中的差异表达基因富集在光合作用、脂肪酸代谢和叶绿素合成等生物学过程。基因功能注释显示, 差异表达基因中有355个和脂质代谢相关, 且多集中在质体中脂肪酸从头合成途径。本研究表明油脂合成途径关键基因的差异调控是造成油菜种子不同部位含油量和脂肪酸组成差异的主要因素。
[1] |
沈金雄, 傅廷栋 . 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011,13(1):1-8
doi: 10.3969/j.issn.1008-0864.2011.01.01 |
Shen J X, Fu T D . Rapeseed production improvement and edible oil supply in China. J Agric Sci Technol, 2011,13(1):1-8 (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0864.2011.01.01 |
|
[2] |
沈琼 . 中国油菜产业竞争优势与劣势分析. 农业产品加工, 2008, ( 8):57-59
doi: 10.3969/j.issn.1671-9646-B.2008.08.016 |
Shen Q . Analysis on competitive advantages and disadvantages of Chinese rapeseed industry. Acad Period Farm Products Proc, 2008, ( 8):57-59 (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-9646-B.2008.08.016 |
|
[3] |
李殿荣, 田建华, 陈文杰, 张文学, 李永红, 王灏 . 甘蓝型油菜特高含油量育种技术与资源创新. 西北农业学报, 2011,20(12):83-87
doi: 10.7606/j.issn.1004-1389.2011.12.016 |
Li D R, Tian J H, Chen W J, Zhang W X, Li Y H, Wang H . Breeding technologies and germplasm innovation on extra- high-oil content in Brassica napus. Acta Agric Boreali-occident Sin, 2011,20(12):83-87 (in Chinese with English abstract)
doi: 10.7606/j.issn.1004-1389.2011.12.016 |
|
[4] |
张永霞, 赵锋, 张红玲 . 中国油菜产业发展现状、问题及对策分析. 世界农业, 2015, ( 4):96-99
doi: 10.13856/j.cn11-1097/s.2015.04.022 |
Zhang Y X, Zhao F, Zhang H L . Analysis on the development status, problems and countermeasures of Chinese rapeseed industry. World Agric, 2015, (4):96-99 (in Chinese with English abstract)
doi: 10.13856/j.cn11-1097/s.2015.04.022 |
|
[5] |
王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421
doi: 10.7505/j.issn.1007-9084.2014.03.020 |
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.03.020 |
|
[6] |
熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄 . 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29:122-128
doi: 10.3969/j.issn.1003-0174.2014.06.023 |
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X . Comparison of nutritive quality between rapeseed oil and different edible vegetable oil—on the genetic improvement of rapeseed quality. J Chin Cereals Oils Assoc, 2014,29:122-128 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2014.06.023 |
|
[7] |
熊源 . 植物油的种类与营养价值. 中国粮食经济, 2014, (6):72
doi: 10.3969/j.issn.1007-4821.2014.06.023 |
Xiong Y . Types and nutritional value of vegetable oil. Chin Food Economy, 2014, ( 6):72 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4821.2014.06.023 |
|
[8] |
Saha S, Enugutti B, Rajakumari S . Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic. diacylglycerol acyltransferase. Plant Physiol, 2006,141:1533-1543
doi: 10.1104/pp.106.084079 pmid: 1533943 |
[9] |
Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in Plants. Metab Eng, 2002,4:12-21
doi: 10.1006/mben.2001.0204 pmid: 11800570 |
[10] |
Dahlqvist A, Stahl U, Lenman M . Phospholipid: diacylglycerol acyltransferase: An enzyme that catalyzes the Acyl-CoA-Independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA, 2000,97:6487-6492
doi: 10.1073/pnas.120067297 |
[11] | 周奕华, 陈正华 . 植物种子中脂肪酸代谢途径的遗传调控与基因工程. 植物学通报, 1998,15(5):16-23 |
Zhou Y H, Chen Z H . Genetic manipulation and gene engineering of fatty acid metabolism in plant seeds. Chin Bull Bot, 1998,15(5):16-23 (in Chinese with English abstract) | |
[12] |
周丹, 赵江哲, 柏杨, 张群, 井文, 章文华 . 植物油脂合成代谢及调控的研究进展. 南京农业大学学报, 2012,35(5):81-90
doi: 10.7685/j.issn.1000-2030.2012.05.009 |
Zhou D, Zhao J Z, Bai Y, Zhang Q, Jing W, Zhang W H . Research advance in triacylglycerol synthesis, metabolism and regulation in plants. 2012,35(5):81-90 (in Chinese with English abstract)
doi: 10.7685/j.issn.1000-2030.2012.05.009 |
|
[13] |
Bates P D, Stymne S, Ohlrogge J B . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069 |
[14] |
Horn P J, Korte A R, Neogi P B, Love E, Fuchs J, Strupat K, Borisjuk L, Shulaev V, Lee Y J, Chapman K D . Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell, 2012,24:622-636
doi: 10.1105/tpc.111.094581 pmid: 22337917 |
[15] |
Horn P J, Silva J E, Anderson D, Fuchs J, Borisjuk L, Nazarenus T J, Shulaev V, Cahoon E B, Chapman K D . Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Plant J, 2013,76:138-150
doi: 10.1111/tpj.12278 pmid: 23808562 |
[16] |
Sturtevant D, Dueñas M E, Lee Y J, Chapman K D . Three- dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: a spatial perspective of molecular heterogeneity. Biochim Biophys Acta, 2017,1862:268-281
doi: 10.1016/j.bbalip.2016.11.012 pmid: 27919665 |
[17] |
Woodfield H K, Sturtevant D, Borisjuk L, Munz E, Guschina I A, Chapman K, Harwood J L . Spatial and temporal mapping of key lipid species in Brassica napus seeds. Plant Physiol, 1998,173:1998-2009
doi: 10.1104/pp.16.01705 pmid: 28188274 |
[18] |
Sturtevant D, Lee Y J, Chapman K D . Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotech, 2015,37:53-60
doi: 10.1016/j.copbio.2015.10.004 pmid: 26613199 |
[19] |
Lu X, Chen D, Shu D . The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol, 2013,162:440-455
doi: 10.1104/pp.113.214874 pmid: 23478895 |
[20] | He R, Salvato F, Park J J . A systems-wide comparison of red rice ( Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biol, 2014,14:46-66. |
[21] |
Schuster S C . Next-generation sequencing transforms today’s biology. Nat Methods, 2008,5:16-18
doi: 10.1038/nmeth1156 pmid: 18165802 |
[22] |
Metzker M L . Sequencing technologies: the next generation. Nat Rev Genet, 2010,11:31-46
doi: 10.1038/nrg2626 pmid: 19997069 |
[23] |
Louisa F L . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2008,9:568-574
doi: 10.1038/nrg2423 |
[24] |
Troncoso-Ponce M A, Kilaru A, Cao X, Durrett T P, Fan J, Jensen J K, Thrower N A, Pauly M, Wilkerson C, Ohlrogge J B . Comparative deep transcriptional profiling of four developing oil seeds. Plant J, 2011,68:1014-1027
doi: 10.1111/j.1365-313X.2011.04751.x pmid: 21851431 |
[25] |
Dussert S, Morcillo F . Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol, 2013,162:1337-1358
doi: 10.1104/pp.113.220525 |
[26] |
Lu S P, Sturtevant D, Aziz M, Jin C, Li Q, Chapman K D, Guo L . Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant J, 2018,94:915-932
doi: 10.1111/tpj.13959 pmid: 29752761 |
[27] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578
doi: 10.1038/nprot.2012.016 pmid: 3334321 |
[28] |
Anders S, Pyl P T, Huber W . HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015,31:166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700 |
[29] |
Wang L, Feng Z, Wang X, Wang X, Zhang X . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26:136-138
doi: 10.1093/bioinformatics/btp612 |
[30] |
Love M I, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15:550-575
doi: 10.1186/s13059-014-0550-8 pmid: 25516281 |
[31] |
Baud S, Lepiniec L . Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010,49:235-249
doi: 10.1016/j.plipres.2010.01.001 pmid: 20102727 |
[32] |
Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay J O, Tschiersch H, Braun H P, Denolf P, Lambert B, Jakob P M, Rolletschek H . Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell, 2013,25:113-128
doi: 10.1105/tpc.113.111740 pmid: 23709628 |
[33] |
Napier J A, Haslam R P, Beaudoin F . Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr Opin Plant Biol, 2014,19:68-75
doi: 10.1016/j.pbi.2014.04.001 pmid: 4070482 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[7] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[8] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[9] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[10] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[11] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[12] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[13] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[14] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
[15] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
|