作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1303-1310.doi: 10.3724/SP.J.1006.2019.94021
孙程明1,2,陈松1,彭琦1,张维1,易斌2,*(),张洁夫1,*(),傅廷栋2
SUN Cheng-Ming1,2,CHEN Song1,PENG Qi1,ZHANG Wei1,YI Bin2,*(),ZHANG Jie-Fu1,*(),FU Ting-Dong2
摘要:
角果长度是油菜重要的农艺性状, 适度增加角果长度有利于扩大角果库容量, 增加光合面积, 提高油菜的籽粒产量。本研究利用Illumina 60K SNP芯片对496份具有代表性的油菜资源进行基因型分析, 考察群体在4个环境中的角果长度表型, 利用MLM和GLM模型进行全基因组关联分析。结果表明, MLM模型检测到7个位点, 联合解释25.01%的表型变异; GLM模型检测到25个位点, 联合解释41.77%的表型变异。合并共同位点后得到27个位点, 其中7个与前人报道的QTL重叠, 其余20个是新鉴定的位点。效应最大的位点Bn-A09-p29991443位于A09染色体, 在MLM和GLM模型中分别解释13.89%和12.86%的表型变异, 携带其优异等位基因的材料平均角果长度增加0.89 cm。同时, 在该位点附近找到已克隆的油菜角果长度基因ARF18和BnaA9.CYP78A9。此外, 在5个位点附近发现拟南芥已知角果长度基因GID1b、FUL、EOD3、DOF4.4和GA20ox1的同源拷贝。本研究结果有助于解析角果长度的遗传基础, 为研究角果长度的调控机理, 指导角果长度的遗传改良打下基础。
[1] | 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[2] | 冷锁虎, 唐瑶, 李秋兰, 左青松, 杨萍 . 油菜的源库关系研究: I. 角果大小对油菜后期源库的调节. 中国油料作物学报, 2005,27(3):37-40. |
Leng S H, Tang Y, Li Q L, Zuo Q S, Yang P . Studies on source and sink of rapeseed: I. Regulation of pod size on source and sink in rapeseed after flowering. Chin J Oil Crop Sci, 2005,27(3):37-40 (in Chinese with English abstract). | |
[3] | 王春丽, 海江波, 田建华, 杨建利, 赵晓光 . 油菜终花后角果和叶片光合对籽粒产量和品质的影响. 西北植物学报, 2014,34:1620-1626. |
Wang C L, Hai J B, Tian J H, Yang J L, Zhao X G . Influence of silique and leaf photosynthesis on yield and quality of seed of oilseed rape (Brassica napus L.) after flowering. Acta Bot Boreal-Occident Sin, 2014,34:1620-1626 (in Chinese with English abstract). | |
[4] | Udall J A, Quijada P A, Lambert B, Osborn T C . Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609. |
[5] | Yang P, Shu C, Chen L, Xu J, Wu J, Liu K . Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012,125:285-296. |
[6] | 漆丽萍 . 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014. |
Qi L P . QTL Analysis for the Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract). | |
[7] | Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T . Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71. |
[8] | Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li X R, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407 |
[9] | Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1512 |
[10] | Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B . Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013,45:43-52. |
[11] | Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B . Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014,5:3438 |
[12] | Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z . A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet, 2016,12:e1006412. |
[13] | Huang X H, Kurata N, Wei X H, Wang Z X, Wang A H, Zhao Q, Zhao Y, Liu K Y, Lu H Y, Li W J, Guo Y L, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Zhu C R, Huang T, Zhang L, Wang Y C, Feng L, Furuumi H, Kubo To, Miyabayashi T, Yuan X P, Xu Q, Dong G J, Zhan Q L, Li C Y, Fujiyama A, Toyoda A, Lu T T, Feng Q, Qian Q, Li J Y, Han B . A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012,490:497-501. |
[14] | Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102. |
[15] | Sun C M, Wang B Q, Wang X H, Hu K N, Li K D, Li Z Y, Li S, Yan L, Guan C Y, Zhang J F, Zhang Z Q, Chen S, Wen J, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673. |
[16] | Ihaka R, Gentleman R . R: a language for data analysis and graphics. J Comput Graph Stat, 1996,5:299-314. |
[17] | Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M . Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,13:427-437. |
[18] | Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620. |
[19] | Hardy O J, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620. |
[20] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[21] | Turner S D . qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014. doi: 10.1101/005165. |
[22] | 周庆红, 周灿, 郑伟, 付东辉 . 甘蓝型油菜角果长度全基因组关联分析. 中国农业科学, 2017,50:228-239. |
Zhou Q H, Zhou C, Zheng W, Fu D H . Genome wide association analysis of silique length in Brassica napus L. Sci Agric Sin, 2017,50:228-239 (in Chinese with English abstract). | |
[23] | Dong H, Tan C, Li Y, He Y, Wei S, Cui Y, Chen Y, Wei D, Fu Y, He Y, Wan H, Liu Z, Xiong Q, Lu K, Li J, Qian W . Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018,9:921. |
[24] | Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H . Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132. |
[25] | Shi L, Song J, Guo C, Wang B, Guan Z, Yang P, Chen X, Zhang Q, King G J, Wang J, Liu K . A CACTA-like transposable element in the upstream region of BnaA9. CYP 78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019. doi: 10.1111/tpj.14236. |
[26] | Gu Q, Ferrándiz C, Yanofsky M F, Martienssen R . The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998,125:1509-1517. |
[27] | Fang W, Wang Z, Cui R, Li J, Li Y . Maternal control of seed size by EOD3/CYP78A6 inArabidopsis thaliana. Plant J, 2012,70:929-939. |
[28] | Zou H F, Zhang Y Q, Wei W, Chen H W, Song Q X, Liu Y F, Zhao M Y, Wang F, Zhang B C, Lin Q . The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J, 2013,449:373-388. |
[29] | Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P . Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006,18:3399-3414. |
[30] | Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008,53:488-504. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[8] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[9] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[10] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[11] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[14] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[15] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
|