欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1303-1310.doi: 10.3724/SP.J.1006.2019.94021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜角果长度性状的全基因组关联分析

孙程明1,2,陈松1,彭琦1,张维1,易斌2,*(),张洁夫1,*(),傅廷栋2   

  1. 1 江苏省农业科学院经济作物研究所/农业部长江下游棉花与油菜重点实验室/江苏省现代作物生产协同创新中心, 江苏南京 210014
    2 华中农业大学植物科学技术学院/作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2019-02-12 接受日期:2019-05-12 出版日期:2019-09-12 网络出版日期:2019-05-17
  • 通讯作者: 易斌,张洁夫
  • 作者简介:E-mail: suncm8331537@gmail.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0100601);国家现代农业产业技术体系建设专项资助(CARS-12)

Genome-wide association study of silique length in rapeseed (Brassica napus L.)

SUN Cheng-Ming1,2,CHEN Song1,PENG Qi1,ZHANG Wei1,YI Bin2,*(),ZHANG Jie-Fu1,*(),FU Ting-Dong2   

  1. 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
    2 National Key Laboratory of Crop Genetic Improvement/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
  • Received:2019-02-12 Accepted:2019-05-12 Published:2019-09-12 Published online:2019-05-17
  • Contact: Bin YI,Jie-Fu ZHANG
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2018YFD0100601);the China Agriculture Research System(CARS-12)

摘要:

角果长度是油菜重要的农艺性状, 适度增加角果长度有利于扩大角果库容量, 增加光合面积, 提高油菜的籽粒产量。本研究利用Illumina 60K SNP芯片对496份具有代表性的油菜资源进行基因型分析, 考察群体在4个环境中的角果长度表型, 利用MLM和GLM模型进行全基因组关联分析。结果表明, MLM模型检测到7个位点, 联合解释25.01%的表型变异; GLM模型检测到25个位点, 联合解释41.77%的表型变异。合并共同位点后得到27个位点, 其中7个与前人报道的QTL重叠, 其余20个是新鉴定的位点。效应最大的位点Bn-A09-p29991443位于A09染色体, 在MLM和GLM模型中分别解释13.89%和12.86%的表型变异, 携带其优异等位基因的材料平均角果长度增加0.89 cm。同时, 在该位点附近找到已克隆的油菜角果长度基因ARF18BnaA9.CYP78A9。此外, 在5个位点附近发现拟南芥已知角果长度基因GID1bFULEOD3DOF4.4GA20ox1的同源拷贝。本研究结果有助于解析角果长度的遗传基础, 为研究角果长度的调控机理, 指导角果长度的遗传改良打下基础。

关键词: 甘蓝型油菜, 产量, 角果长度, 关联分析, SNP标记

Abstract:

Silique length is a key agronomic trait of rapeseed. Moderately increasing silique length is conducive to high seed yield by enlarging photosynthetic area and seed volume. A collection of 496 representative rapeseed accessions was genotyped by the Illumina 60K SNP array, and phenotyped for silique length in four environments. The genome-wide association study (GWAS) of silique length was performed via the MLM (Mixed linear model) and GLM (General linear model). Seven loci and 25 loci were detected with MLM and GLM, which explained 25.01% and 41.77% of the phenotypic variance, respectively. Combining the common loci between two models, we finally got 27 unique loci, of which seven were overlapped with reported QTLs, and 20 were new one. Bn-A09-p29991443, the most effective locus, was located on chromosome A09, accounting for 13.89% and 12.86% of the phenotypic variance in MLM and GLM, respectively. Silique length of accessions with the favorable allele of Bn-A09-p29991443 was averagely 0.89 cm longer than that with the unfavorable allele. The cloned silique length genes ARF18 and BnaA9.CYP78A9 in rapeseed was found to be colocalized with Bn-A09-p29991443. Besides, five candidates including GID1b, FUL, EOD3, DOF4.4 and GA20ox1, orthologous to documented Arabidopsis silique length genes, were found near our GWAS loci. The results provide an insight into the genetic basis of silique length and lay a foundation for further mechanism exploration and breeding for this trait in B. napus.

Key words: Brassica napus L, yield, silique length, GWAS, SNP

表1

关联群体角果长度性状的统计分析"

环境
Environment
最小值
Min.
最大值
Max.
平均值±标准差
Mean ± SD
变异系数
CV
2013/2014 Nanjing 3.42 11.37 5.40±1.01 0.19
2013/2014 Nanjing 3.28 15.80 6.39±1.25 0.20
2014/2015 Taizhou 3.31 10.18 5.79±0.88 0.15
2015/2016 Taizhou 4.01 9.94 5.90±0.77 0.13

图1

关联群体在4个环境的角果长度分布 A和B分别指群体在南京和泰州2年的角果长度频数分布图。"

表2

4个环境的角果长度相关系数"

2012/2013 Nanjing 2013/2014
Nanjing
2014/2015 Taizhou
2013/2014 Nanjing 0.57***
2014/2015 Taizhou 0.64*** 0.70***
2015/2016 Taizhou 0.56*** 0.57*** 0.75***

表3

MLM角果长度显著关联位点(BLUP) "

标记
Marker
染色体
Chr.
位置
Position
-lg (P) 表型变异
R2 (%)
环境
Environment
已报道QTL
Reported QTL
Bn-A07-p8572785 A07 10,018,929 5.80 5.10 13NJ/15TZ
Bn-A09-p28925363 A09 26,858,796 5.15 4.92 13NJ/15TZ [8, 22]
Bn-A09-p29991443 A09 27,815,620 13.59 13.89 13NJ/14NJ/15TZ [6, 8, 22, 23]
Bn-scaff_15712_2-p492440 C02 38,697,584 4.67 3.54
Bn-scaff_17869_1-p813291 C04 9,884,407 5.41 4.73 14NJ /15TZ
Bn-scaff_20817_1-p60579 C04 48,635,772 4.56 4.27 15TZ
Bn-scaff_15576_1-p68473 C09 41,121,951 4.29 3.21 13NJ/15TZ

图2

油菜角果长度全基因组关联分析(BLUP) A: 角果长度MLM曼哈顿图; B: 角果长度MLM QQ图; C: 角果长度GLM曼哈顿图; D: 角果长度GLM QQ图。水平线代表Bonferroni阈值。"

表4

GLM角果长度显著关联位点(BLUP) "

标记
Marker
染色体
Chr.
位置
Position
-lg (P) 表型变异
R2 (%)
环境
Environment
已报道QTL
Reported QTL
Bn-A02-p11454573 A02 8,166,563 4.61 3.72 13NJ/14NJ/15TZ
Bn-A03-p4408895 A03 3,938,915 4.39 2.91
Bn-scaff_16092_1-p866917 A03 18,418,252 4.74 4.66 13NJ/15TZ
Bn-scaff_27914_1-p34836 A06 15,544,511 6.21 5.30 15TZ/16TZ
Bn-A06-p23042849 A06 22,092,944 4.72 3.85 15TZ/16TZ
Bn-A07-p1228602 A07 860,252 4.51 3.76 16TZ
Bn-A10-p12099059 A07 2,762,935 5.02 3.38 15TZ/16TZ
Bn-A07-p7606228 A07 9,162,030 6.03 4.90 13NJ/15TZ/16TZ [23]
Bn-A07-p8572785 A07 10,018,929 9.38 7.76 13NJ/15TZ/16TZ
Bn-A07-p10340211 A07 11,509,208 4.45 3.70 15TZ/16TZ
Bn-A07-p13957160 A07 15,884,413 5.18 4.20 15TZ/16TZ [23]
Bn-A07-p18319586 A07 20,221,220 5.14 4.33 14NJ/15TZ [6, 23]
Bn-A09-p3051349 A09 2,971,335 4.31 3.32 15TZ
Bn-A09-p28925363 A09 26,858,796 6.08 4.89 13NJ/15TZ/16TZ [8, 22]
Bn-A09-p29991443 A09 27,815,620 16.27 12.86 13NJ/14NJ/15TZ/16TZ [6, 8, 22, 23]
Bn-A10-p3966740 A10 885,133 6.47 4.46 13NJ/14NJ/15TZ/16TZ [6]
Bn-A10-p15793623 A10 15,756,213 4.60 3.65
Bn-scaff_17177_1-p381225 C02 44,843,894 5.12 4.13 15TZ
Bn-A05-p4304172 C04 6,449,454 6.96 5.75 14NJ/15TZ/16TZ
Bn-scaff_27914_1-p9919 C04 28,255,420 7.06 6.09 13NJ/14NJ/15TZ/16TZ
Bn-scaff_20817_1-p60579 C04 48,635,772 7.98 6.89 13NJ/14NJ/15TZ/16TZ
Bn-scaff_16069_1-p1668600 C07 38,086,007 6.38 5.29 15TZ/16TZ
Bn-scaff_16069_1-p3731985 C07 40,142,298 5.92 4.63 13NJ/14NJ/15TZ/16TZ
Bn-scaff_16361_1-p241830 C08 27,753,144 4.34 3.48 13NJ [9]
Bn-scaff_15576_1-p68473 C09 41,121,951 5.47 3.72 14NJ/15TZ/16TZ

表5

角果长度关联位点候选基因信息"

标记
Marker
油菜基因
Rapeseed gene
染色体
Chr.
位置
Position
拟南芥同源基因
Ar. homolog
参考基因组
Ref. genome
Bn-A07-p13957160 BnaA07g19530 A07 15,590,253 GID1b Darmor-bzh
Bn-A09-p3051349 BnaA09g05500 A09 2,718,832 FUL Darmor-bzh
Bn-scaff_20817_1-p60579 BnaC04g50960 C04 48,343,005 EOD3 Darmor-bzh
Bn-scaff_16069_1-p1668600 BnaC07g36530 C07 38,575,790 DOF4.4 Darmor-bzh
Bn-scaff_16069_1-p3731985 BnaC07g39650 C07 40,392,394 GA20ox1 Darmor-bzh
Bn-A09-p29991443 BnA09g0377700 A09 36,712,502 ARF18 ZS11
Bn-A09-p29991443 BnA09g0377760 A09 36,740,578 CYP78A9 ZS11
[1] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 冷锁虎, 唐瑶, 李秋兰, 左青松, 杨萍 . 油菜的源库关系研究: I. 角果大小对油菜后期源库的调节. 中国油料作物学报, 2005,27(3):37-40.
Leng S H, Tang Y, Li Q L, Zuo Q S, Yang P . Studies on source and sink of rapeseed: I. Regulation of pod size on source and sink in rapeseed after flowering. Chin J Oil Crop Sci, 2005,27(3):37-40 (in Chinese with English abstract).
[3] 王春丽, 海江波, 田建华, 杨建利, 赵晓光 . 油菜终花后角果和叶片光合对籽粒产量和品质的影响. 西北植物学报, 2014,34:1620-1626.
Wang C L, Hai J B, Tian J H, Yang J L, Zhao X G . Influence of silique and leaf photosynthesis on yield and quality of seed of oilseed rape (Brassica napus L.) after flowering. Acta Bot Boreal-Occident Sin, 2014,34:1620-1626 (in Chinese with English abstract).
[4] Udall J A, Quijada P A, Lambert B, Osborn T C . Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
[5] Yang P, Shu C, Chen L, Xu J, Wu J, Liu K . Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012,125:285-296.
[6] 漆丽萍 . 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014.
Qi L P . QTL Analysis for the Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract).
[7] Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T . Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol, 2016,16:71.
[8] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li X R, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407
[9] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1512
[10] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B . Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013,45:43-52.
[11] Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B . Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014,5:3438
[12] Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z . A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet, 2016,12:e1006412.
[13] Huang X H, Kurata N, Wei X H, Wang Z X, Wang A H, Zhao Q, Zhao Y, Liu K Y, Lu H Y, Li W J, Guo Y L, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Zhu C R, Huang T, Zhang L, Wang Y C, Feng L, Furuumi H, Kubo To, Miyabayashi T, Yuan X P, Xu Q, Dong G J, Zhan Q L, Li C Y, Fujiyama A, Toyoda A, Lu T T, Feng Q, Qian Q, Li J Y, Han B . A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012,490:497-501.
[14] Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
[15] Sun C M, Wang B Q, Wang X H, Hu K N, Li K D, Li Z Y, Li S, Yan L, Guan C Y, Zhang J F, Zhang Z Q, Chen S, Wen J, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673.
[16] Ihaka R, Gentleman R . R: a language for data analysis and graphics. J Comput Graph Stat, 1996,5:299-314.
[17] Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M . Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,13:427-437.
[18] Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620.
[19] Hardy O J, Vekemans X . SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620.
[20] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
[21] Turner S D . qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014. doi: 10.1101/005165.
[22] 周庆红, 周灿, 郑伟, 付东辉 . 甘蓝型油菜角果长度全基因组关联分析. 中国农业科学, 2017,50:228-239.
Zhou Q H, Zhou C, Zheng W, Fu D H . Genome wide association analysis of silique length in Brassica napus L. Sci Agric Sin, 2017,50:228-239 (in Chinese with English abstract).
[23] Dong H, Tan C, Li Y, He Y, Wei S, Cui Y, Chen Y, Wei D, Fu Y, He Y, Wan H, Liu Z, Xiong Q, Lu K, Li J, Qian W . Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018,9:921.
[24] Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H . Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132.
[25] Shi L, Song J, Guo C, Wang B, Guan Z, Yang P, Chen X, Zhang Q, King G J, Wang J, Liu K . A CACTA-like transposable element in the upstream region of BnaA9. CYP 78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019. doi: 10.1111/tpj.14236.
[26] Gu Q, Ferrándiz C, Yanofsky M F, Martienssen R . The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998,125:1509-1517.
[27] Fang W, Wang Z, Cui R, Li J, Li Y . Maternal control of seed size by EOD3/CYP78A6 inArabidopsis thaliana. Plant J, 2012,70:929-939.
[28] Zou H F, Zhang Y Q, Wei W, Chen H W, Song Q X, Liu Y F, Zhao M Y, Wang F, Zhang B C, Lin Q . The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J, 2013,449:373-388.
[29] Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P . Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006,18:3399-3414.
[30] Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008,53:488-504.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[8] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[11] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[15] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!