欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1416-1430.doi: 10.3724/SP.J.1006.2019.84169

• 耕作栽培· 生理生化 • 上一篇    下一篇

甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选

郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元(),崔翠()   

  1. 西南大学农学与生物科技学院, 重庆 400715
  • 收稿日期:2018-12-12 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-05-08
  • 通讯作者: 周清元,崔翠
  • 作者简介:E-mail: 853320685@qq.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-12);国家重点研发计划项目(2018YFD0100505);重庆市社会事业与民生保障科技创新项目资助(cstc2016shmszx80015)

Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus

GAO Huan-Huan,YE Sang,WANG Qian,WANG Liu-Yan,WANG Rui-Li,CHEN Liu-Yi,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan(),CUI Cui()   

  1. College of Agronomy and Biotechnology, Southwestern University, Chongqing 400715, China
  • Received:2018-12-12 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-05-08
  • Contact: Qing-Yuan ZHOU,Cui CUI
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-12);the National Key Research and Development Project(2018YFD0100505);the Science and Technology Committee of Chongqing(cstc2016shmszx80015)

摘要:

种子萌发是油菜植株形态建成的重要阶段, 铝毒是酸性土壤中影响其种子萌发的主要因素之一, 因此筛选出种子萌发过程中耐铝毒种质对油菜生产及研究具有重要意义。本研究利用5份甘蓝型油菜品种(系)筛选出油菜萌发期耐铝毒种质资源处理的适宜胁迫浓度为90 μg mL -1。并以该浓度处理148份甘蓝型油菜品种(系)种子, 于萌发期测定其发芽势、发芽率、鲜重、干重、根长和芽长等指标, 通过铝毒胁迫耐性综合评价值(A值)、平均隶属函数值(ASF值)、对铝毒加权耐性系数(WAC值)、相关性、频数、主成分、灰色关联度、聚类和逐步回归分析等鉴定萌发期耐铝性, 建立萌发期对铝毒耐性综合评价模型并筛选出适宜的评价鉴定指标。结果表明, 148份甘蓝型油菜的萌发期各指标在品种(系)间存在显著差异; 筛选出萌发期耐铝毒甘蓝型油菜品种(系) 01188、WH-20、A109、甲预31棚等。根据灰色关联度及回归分析结果认为, 在油菜萌发期测定其根长、芽长、鲜重、发芽率和发芽势, 通过回归方程估算其A值, 可以初步判断甘蓝型油菜种质的耐铝毒特性。

关键词: 甘蓝型油菜, 萌发期, 铝毒胁迫, 种质资源筛选, 综合评价

Abstract:

Seed germination is an important stage of plant morphogenesis in rapeseed. Aluminum toxicity is one of the main factors affecting seed germination in acidic soil. Therefore, it is important for rapeseed production and research to screen Al-tolerant germplasms during seed germination. In this study, five Brassica napus cultivars (lines) were used to screen the optimum treatment concentration of Al toxicity at germination stage, which was determined at 90 μg mL -1. The germination vigor, germination rate, fresh weight, dry weight, root length and bud length of 148 cultivars (lines) of Brassica napus were measured at germination stage. The comprehensive evaluation value (A value), average subordinate function value (ASF value), weighted tolerance coefficient (WAC value), correlation coefficient, frequency, principal component, grey relational degree, clustering and stepwise regression were used to identify the Al tolerance at germination stage. A comprehensive evaluation model of Al tolerance at germination stage was established, suitable evaluation and identification indexes were selected. There were significant differences in the germination parameters of 148 Brassica napus germplasm, and aluminum-tolerant Brassica napus varieties (lines) during germination stage were screened, including 01188, WH-20, A109, and Jiayu 31 peng. The results of grey correlation and regression analysis indicated that the root length, bud length, fresh weight, germination rate and germination potential measured at the germination stage of rapeseed, and the A value of the indices estimated by regression equation, could be preliminarily judged the aluminum tolerance of rape germplasm.

Key words: Brassica napus L, germination stage, aluminum toxicity stress, screening for germplasm resources, comprehensive evaluation

表1

各品种(系)不同铝毒胁迫浓度下根长变化"

浓度Concentration
(μg mL-1)
品种(系) Cultivar (line) 均值Mean 较对照变化Comparison with the control (%)
ZS11 D011 D363 D016 D064
0 9.39±0.131 a 7.97±0.345 a 9.17±0.390 a 5.39±0.401 a 9.24±0.259 a 8.23 0
30 8.35±0.372 ab 8.17±0.237 a 9.04±0.068 a 5.17±0.947 a 7.66±0.119 a 7.68 -6.72
60 6.78±1.084 bc 7.34±0.377 a 5.90±0.700 b 5.34±0.541 a 7.48±0.422 a 6.57 -20.24
90 6.97±0.240 bc 6.96±0.489 a 6.10±0.493 b 4.35±0.127 a 7.95±0.631 a 6.47 -21.45
120 5.71±0.699 c 4.65±0.560 b 3.81±0.468 c 2.79±0.244 b 4.00±0.952 b 4.19 -49.07
150 3.47±0.623 d 1.61±0.263 c 3.82±0.223 c 1.68±0.287 b 4.10±0.122 b 2.50 -69.65
240 2.10±0.123 d 2.39±0.347 c 3.83±0.745 c 1.79±0.546 b 2.32±0.149 b 2.27 -72.41

表2

铝毒胁迫下油菜品种(系)各指标的变化"

参数
Parameter
根长
RL (cm)
芽长
SL (cm)
发芽势
GV (%)
发芽率
GR (%)
鲜重
FW (g)
干重
DW (g)
对照 最大值Max. 12.75 3.09 100.00 100.00 0.55 0.06
Control 最小值Min. 1.79 0.80 12.50 40.00 0.14 0.02
均值Average 6.72** 1.65** 64.88** 69.05** 0.33** 0.04**
标准差SE 1.89 0.41 19.80 17.12 0.08 0.01
变异系数CV (%) 28.08 24.98 30.52 24.79 24.90 21.60
处理 最大值Max. 8.68 3.29 100.00 100.00 0.47 0.09
Treatment 最小值Min. 0.49 0.86 7.50 15.00 0.12 0.02
均值Average 4.55** 1.73** 68.65** 72.18** 0.28** 0.03**
标准差SE 1.50 0.42 20.17 18.66 0.08 0.01
变异系数CV (%) 32.96 24.49 29.38 25.85 27.71 26.41
较对照变化 均值Average (%) -32.36 4.86 5.81 4.53 -15.60 -4.26
Comparison with the control 变异系数CV (%) 17.38 -1.96 -3.73 4.26 11.28 22.24

图1

甘蓝型油菜不同指标耐性系数的频次分布 GV: 发芽势; GR: 发芽率; RL: 根长; SL: 芽长; FW: 鲜重; DW: 干重。"

表3

油菜各指标铝毒胁迫耐性系数(AC值) "

参数
Parameter
发芽势
GV (%)
发芽率
GR (%)
鲜重
FW (g)
干重
DW (g)
根长
RL (cm)
芽长
SL (cm)
最大值Max. 3.125 2.250 1.721 1.613 1.874 1.486
最小值Min. 0.278 0.316 0.394 0.710 0.271 0.698
均值Average 1.093 ** 1.064 ** 0.857** 0.959 ** 0.705 ** 1.059 **
标准差SE 0.325 0.258 0.191 0.121 0.257 0.137
变异系数CV (%) 29.717 24.263 22.249 12.650 36.528 12.888

表4

油菜各指标铝毒胁迫耐性系数相关系数"

测定指标
Index
发芽势
GV (%)
发芽率
GR (%)
鲜重
FW (g)
干重
DW (g)
根长
RL (cm)
芽长
SL (cm)
发芽势 GV 1
发芽率 GR 0.888** 1
鲜重 FW 0.026 0.008 1
干重 DW -0.167 -0.159 0.407** 1
根长 RL 0.157* 0.227** 0.420** 0.116 1
芽长 SL -0.032 -0.036 0.246** 0.128 0.154* 1

表5

各综合指标的特征值、贡献率和主成分特征向量值"

主成分Principal
component
特征值Eigen value 贡献率
Variance
contribution ratio
累计贡献率Accumulated variance contribution ratio 特征向量值 Eigen vector of measured indicators
发芽势
GV
发芽率
GR
鲜重
FW
干重
DW
根长
RL
芽长
SL
1 2.005 33.418 33.418 0.944 0.956 0.090 -0.230 0.372 -0.015
2 1.771 29.522 62.940 -0.087 -0.068 0.837 0.652 0.616 0.505
3 0.885 14.747 77.688 -0.021 -0.031 -0.154 -0.407 -0.048 0.832
4 0.763 12.723 90.411 0.216 0.157 -0.039 0.511 -0.618 0.219

表6

铝毒胁迫下油菜品种(系)资源的ASF值、A值、WAC值排序"

品种(系)
Cultivar (line)
材料来源
Source
ASF值
ASF value
排序
Order
A值
A value
排序
Order
WAC值
WAC value
排序
Order
SWU7 重庆 Chongqing 0.35 59 0.12 58 0.90 88
SWU36 重庆 Chongqing 0.27 125 -0.61 129 0.79 136
SWU49 重庆 Chongqing 0.34 70 -0.07 80 0.90 91
SWU64 重庆 Chongqing 0.45 11 0.93 12 1.11 11
SWU69 重庆 Chongqing 0.40 25 0.44 26 1.00 33
SWU71 重庆 Chongqing 0.38 35 0.44 25 0.99 40
SWU77 重庆 Chongqing 0.40 26 0.20 45 0.97 49
SWU80 重庆 Chongqing 0.39 28 0.43 28 1.01 29
SWU81 重庆 Chongqing 0.38 39 0.11 60 1.02 27
SWU84 重庆 Chongqing 0.28 114 -0.40 114 0.86 117
SWU88 重庆 Chongqing 0.38 34 -0.07 79 0.97 45
SWU95 重庆 Chongqing 0.26 127 -0.75 136 0.85 119
SWU96 重庆 Chongqing 0.40 22 0.57 19 1.07 15
SWU99 重庆 Chongqing 0.39 31 0.17 49 0.97 43
SWU100 重庆 Chongqing 0.28 117 -0.34 109 0.86 112
SWU110 重庆 Chongqing 0.48 8 1.28 5 1.23 6
SWU111 重庆 Chongqing 0.31 98 -0.30 103 0.87 108
SWU112 重庆 Chongqing 0.37 44 0.10 62 0.98 41
1L187 湖北 Hubei 0.50 6 1.23 6 1.19 8
中双6号Zhongshuang 6 湖北 Hubei 0.41 19 0.83 14 1.07 16
1L191 湖北 Hubei 0.45 10 1.03 10 1.15 9
辐油4号 Fuyou 4 湖北 Hubei 0.32 88 -0.14 89 0.93 71
1L410 湖北 Hubei 0.29 110 -0.12 85 0.88 106
扬J6711 Yang J6711 湖北 Hubei 0.35 62 0.05 67 0.99 36
Monty 湖北 Hubei 0.35 54 0.14 54 0.97 46
史力丰 Shilifeng 湖北 Hubei 0.32 90 -0.15 90 0.91 82
青662A Qing 662A 湖北 Hubei 0.31 97 -0.30 104 0.90 89
WH-19 湖北 Hubei 0.50 7 1.15 8 1.20 7
11-9-704 湖北 Hubei 0.63 2 1.88 2 1.43 1
WH-95 湖北 Hubei 0.34 65 -0.34 108 0.91 83
NY7 湖北 Hubei 0.30 108 -0.15 91 0.88 100
华油6号 Huayou 6 湖北 Hubei 0.29 112 -0.39 113 0.84 122
华油10 Huayou 10 湖北 Hubei 0.39 29 0.32 34 0.96 51
Suigenshu 湖北 Hubei 0.43 14 0.68 18 1.03 24
华油4号 Huayou 4 湖北 Hubei 0.36 53 0.19 47 0.93 68
Y2 江苏 Jiangsu 0.30 106 -0.29 101 0.88 103
勺叶青 Shaoyeqing 江苏 Jiangsu 0.28 121 -0.46 118 0.83 125
沪激早 Lujizao 江苏 Jiangsu 0.32 87 0.14 55 0.94 64
大花球 Dahuaqiu 江苏 Jiangsu 0.33 82 -0.07 81 0.89 95
荣选 Rongxuan 江苏 Jiangsu 0.32 94 -0.21 96 0.90 87
宁油6号 Ningyou 6 江苏 Jiangsu 0.30 99 -0.45 117 0.85 118
广德8104 Guangde 8104 江苏 Jiangsu 0.38 36 0.39 30 1.01 30
宿84-6 Su 84-6 江苏 Jiangsu 0.35 60 0.06 65 0.96 50
芥65-1 Jie 65-1 江苏 Jiangsu 0.34 71 0.14 56 0.93 70
品种(系)
Cultivar (line)
材料来源
Source
ASF值
ASF value
排序
Order
A值
A value
排序
Order
WAC值
WAC value
排序
Order
SWU20 重庆 Chongqing 0.29 111 -0.36 111 0.88 102
SWU28 重庆 Chongqing 0.38 37 0.29 37 0.97 44
SWU40 重庆 Chongqing 0.41 20 0.44 24 1.06 17
SWU47 重庆 Chongqing 0.36 51 0.35 31 0.87 111
SWU48 重庆 Chongqing 0.23 137 -0.74 135 0.78 137
SWU56 重庆 Chongqing 0.23 138 -0.77 137 0.80 131
SWU59 重庆 Chongqing 0.20 143 -0.80 139 0.76 141
SWU65 重庆 Chongqing 0.24 135 -0.71 133 0.80 133
SWU92 重庆 Chongqing 0.28 119 -0.40 115 0.88 105
SWU101 重庆 Chongqing 0.27 126 -0.58 127 0.85 120
川油20 Chuanyou 20 四川 Sichuan 0.38 38 0.26 41 1.04 23
川油18 Chuanyou 18 四川 Sichuan 0.28 116 -0.34 107 0.90 86
CY12Q95406 四川 Sichuan 0.36 47 0.21 43 0.93 69
CY12Q8-7 四川 Sichuan 0.30 104 -0.53 121 0.86 113
CY12QSZ06 四川 Sichuan 0.19 146 -0.99 142 0.76 142
CY12Q95108 四川 Sichuan 0.25 133 -0.58 126 0.82 127
CY12Q21535-N3 四川 Sichuan 0.35 63 0.18 48 0.96 52
wx1025 湖南 Hunan 0.23 139 -0.96 141 0.77 140
wx10315 湖南 Hunan 0.34 69 -0.27 99 0.87 110
10-1358 湖南 Hunan 0.32 85 -0.78 138 0.77 138
湘油13号 Xiangyou 13 湖南 Hunan 0.11 148 -1.54 148 0.57 148
782 湖南 Hunan 0.27 124 -0.57 125 0.80 132
WX10329 湖南 Hunan 0.23 141 -1.06 144 0.76 143
509 湖南 Hunan 0.26 130 -0.66 131 0.80 130
1321 湖南 Hunan 0.30 100 -0.12 86 0.99 39
07022 湖北 Hubei 0.44 12 -0.20 95 1.01 31
07094 湖北 Hubei 0.32 89 -0.05 76 0.89 96
97097 湖北 Hubei 0.39 30 -0.25 98 0.95 57
RQ011 湖北 Hubei 0.40 23 -0.19 94 1.01 28
96021 湖北 Hubei 0.18 147 -1.03 143 0.73 145
01111 湖北 Hubei 0.38 33 -0.05 77 0.99 37
01570 湖北 Hubei 0.44 13 0.74 16 1.04 21
01188 湖北 Hubei 0.64 1 2.02 1 1.39 2
02354 湖北 Hubei 0.34 73 0.00 74 0.92 78
02359 湖北 Hubei 0.33 79 0.30 36 0.88 99
93205 湖北 Hubei 0.27 123 -0.56 124 0.77 139
93210 湖北 Hubei 0.34 68 0.15 53 0.97 48
Nca 湖北 Hubei 0.43 16 0.87 13 1.10 12
中双4号 Zhongshuang 4 湖北 Hubei 0.34 67 0.21 44 0.95 54
中双11号 Zhongshuang 11 湖北 Hubei 0.28 120 -0.51 120 0.83 126
2011-6308 湖北 Hubei 0.37 43 0.32 33 0.95 55
2012-3448 湖北 Hubei 0.23 140 -0.95 140 0.80 129
2012-5086 湖北 Hubei 0.32 86 -0.23 97 0.94 62
2012-8380 湖北 Hubei 0.30 102 -0.18 93 0.89 94
2012-8998 湖北 Hubei 0.40 21 0.51 23 1.00 34
品种(系)
Cultivar (line)
材料来源
Source
ASF值
ASF value
排序
Order
A值
A value
排序
Order
WAC值
WAC value
排序
Order
2012-9478 湖北 Hubei 0.36 48 0.25 42 1.04 20
希望106 Xiwang 106 湖北 Hubei 0.36 49 0.31 35 0.94 65
阳光198 Yangguang 198 湖北 Hubei 0.20 144 -1.19 147 0.71 147
中双10号 Zhongshuang 10 湖北 Hubei 0.35 56 0.16 52 0.92 72
中双12号 Zhongshuang 12 湖北 Hubei 0.36 50 0.44 27 0.99 35
中油589 Zhongyou 589 湖北 Hubei 0.40 24 0.53 21 1.03 25
华油13号 Huayou 13 湖北 Hubei 0.34 74 0.10 61 0.95 56
Rucabo 湖北 Hubei 0.35 55 0.05 68 0.94 66
WH-20 湖北 Hubei 0.37 42 0.26 40 1.04 22
WH-23 湖北 Hubei 0.37 41 0.27 39 1.00 32
WH-24 湖北 Hubei 0.34 77 0.12 59 0.92 76
WH-25 湖北 Hubei 0.33 78 0.00 72 0.94 60
WH-33 湖北 Hubei 0.43 15 0.95 11 1.09 13
WH-37 湖北 Hubei 0.34 66 0.06 66 0.88 101
WH-38 湖北 Hubei 0.30 105 -0.38 112 0.91 79
WH-41 湖北 Hubei 0.25 134 -0.56 123 0.79 135
WH-45 湖北 Hubei 0.31 96 -0.18 92 0.86 116
WH-49 湖北 Hubei 0.28 113 -0.46 119 0.89 93
WH-55 湖北 Hubei 0.51 5 1.13 9 1.23 5
WH-60 湖北 Hubei 0.40 27 0.41 29 1.02 26
甲预17棚 Jiayu 17 peng 湖北 Hubei 0.20 142 -1.15 146 0.72 146
甲预25棚 Jiayu 25 peng 湖北 Hubei 0.30 101 -0.12 87 0.89 92
甲预31棚 Jiayu 31 peng 湖北 Hubei 0.51 3 1.62 4 1.35 3
甲915 Jia 915 湖北 Hubei 0.42 18 0.72 17 1.08 14
甲922 Jia 922 湖北 Hubei 0.20 145 -1.08 145 0.75 144
甲917 Jia 917 湖北 Hubei 0.28 122 -0.36 110 0.88 107
甲931 Jia 931 湖北 Hubei 0.26 131 -0.61 128 0.84 123
甲963棚 Jia 963 peng 湖北 Hubei 0.34 64 0.28 38 0.97 47
沪油17号 Huyou 17 江苏 Jiangsu 0.29 109 -0.10 83 0.95 58
沪油15号Huyou 15 江苏 Jiangsu 0.46 9 1.15 7 1.13 10
宁油14号 Ningyou 14 江苏 Jiangsu 0.33 80 0.00 71 0.92 73
扬油6号 Yangyou 6 江苏 Jiangsu 0.34 72 0.09 63 0.92 77
苏油1号 Suyou 1 江苏 Jiangsu 0.30 107 -0.31 105 0.87 109
浙双8号 Zheshuang 8 江苏 Jiangsu 0.32 91 -0.03 75 0.88 104
浙油758 Zheyou 758 江苏 Jiangsu 0.28 118 -0.42 116 0.84 121
沪油19 Huyou 19 江苏 Jiangsu 0.24 136 -0.55 122 0.79 134
皖油 29 Wanyou 29 江苏 Jiangsu 0.37 40 0.52 22 0.99 38
至尊 Zhizun 青海 Qinghai 0.38 32 0.54 20 0.94 63
A117 陕西 Shaanxi 0.25 132 -0.72 134 0.89 97
B250 陕西 Shaanxi 0.34 76 -0.13 88 0.92 75
B265 陕西 Shaanxi 0.37 45 0.33 32 0.98 42
A109 陕西 Shaanxi 0.51 4 1.66 3 1.32 4
GY284 陕西 Shaanxi 0.30 103 -0.34 106 0.91 80
A97 陕西 Shaanxi 0.33 83 0.00 73 0.94 67
品种(系)
Cultivar (line)
材料来源
Source
ASF值
ASF value
排序
Order
A值
A value
排序
Order
WAC值
WAC value
排序
Order
A148 陕西 Shaanxi 0.36 46 0.17 50 1.04 19
09-P32 湖北 Hubei 0.28 115 -0.29 102 0.86 114
10-P10 湖北 Hubei 0.36 52 0.13 57 0.92 74
11-P30 湖北 Hubei 0.33 81 -0.05 78 0.86 115
03IIB 甘肃 Gansu 0.34 75 0.04 69 0.91 81
DDI 甘肃 Gansu 0.33 84 0.08 64 0.91 84
06T9F 甘肃 Gansu 0.35 61 -0.07 82 0.94 61
03II4B 甘肃 Gansu 0.26 129 -0.62 130 0.84 124
03LF1 甘肃 Gansu 0.26 128 -0.70 132 0.81 128
9852 甘肃 Gansu 0.31 95 -0.28 100 0.91 85
06H7 甘肃 Gansu 0.35 57 0.20 46 0.95 59
CY18PXW-62 四川 Sichuan 0.43 17 0.77 15 1.05 18
96063 湖北 Hubei 0.35 58 0.16 51 0.90 90
浙油21 Zheyou 21 湖北 Hubei 0.32 92 0.02 70 0.96 53
97177 江苏 Jiangsu 0.32 93 -0.11 84 0.88 98

表7

供试油菜种质耐性评价指标的分级"

指标
Index
类群 Class
I II III IV
AC值
AC value
发芽势GV 1.533 1.105 1.057 0.850
发芽率GR 1.416 1.088 1.035 0.848
鲜重FW 1.064 0.898 0.811 0.754
干重DW 0.982 0.942 0.985 0.923
根长RL 1.036 0.757 0.657 0.517
芽长SL 1.161 1.140 1.026 0.933
ASF值 ASF value 0.480 0.365 0.320 0.239
WAC值 WAC value 1.178 0.969 0.907 0.786
A值 A value 1.146 0.269 -0.187 -0.788

图2

基于A值的供试种质耐性系统聚类图"

表8

供试油菜种质各指标AC值与A值的灰色关联度"

指标
Index
关联度
Correlation degree
权重
Weight
排序
Rank
根长RL 0.313 0.213 1
鲜重FW 0.265 0.180 2
干重DW 0.246 0.168 3
芽长RL 0.218 0.149 4
发芽率GR 0.217 0.148 5
发芽势GV 0.208 0.142 6
[1] Kochian L V . Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Mol Biol, 1995,46:237-260.
[2] Gupta A, Tripathi G, Lahiri D, Balani K . Compression molded ultra high molecular weight polyethylene-hydroxyapatite- aluminum oxide-carbon nanotube hybrid composites for hard tissue replacement. J Mater Sci Technol, 2013,29:514-522.
[3] 党甲军 . 抗铝毒油菜品种的实验室筛选及铝毒胁迫对油菜幼苗生长的影响. 西南大学硕士学位论文, 重庆, 2009.
Dang J J . Screening Rape (Brassica campestris) Varieties of Aluminum-resistance in the Laboratory and Effects of A13+ Stress on Rape Seedling Growth. MS Thesis of Southwest University, Chongqing, China, 2009 (in Chinese with English abstract).
[4] 黄巧云, 李学垣, 徐凤琳 . 土壤酸化过程中铝的形态与小麦缺钙和铝毒发生的条件. 华中农业大学学报, 1995,14:147-153.
Huang Q Y, Li X Y, Xu F L . Relationship of active aluminum forms during soil acidification with calcium deficiency and aluminum toxicity for wheat. J Huazhong Agric Univ, 1995,14:147-153 (in Chinese with English abstract).
[5] He H Y, He L F, Gu M H, Li X F . Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci, 2012,183:123-130.
[6] 周蓉 . 花生耐铝性及遗传改良研究进展. 花生学报, 2003,32(增刊):144-148.
Zhou R . Advances in aluminum tolerance and genetic improvement of peanut. J Peanut Sci, 2003,32(suppl):144-148 (in Chinese).
[7] 赵其国 . 中国东部红壤地区土壤退化的时空变化、机理及调控. 北京: 科学出版社, 2002. pp 70-80.
Zhao Q G. Spatial and Temporal Variation, Mechanism and Regulation of Soil Degradation in Red Soil Region of Eastern China. Beijing: Science Press, 2002. pp 70-80(in Chinese).
[8] 郭治兴, 王静, 柴敏, 陈泽鹏, 詹振寿, 郑武平, 魏秀国 . 近30年来广东省土壤pH值的时空变化. 应用生态学报, 2011,22:425-430.
Guo Z X, Wang J, Chai M, Chen Z P, Zhan Z S, Zheng W P, Wei X G . Spatial and temporal changes of soil pH in Guangdong province in recent 30 years. J Appl Ecol, 2011,22:425-430 (in Chinese with English abstract).
[9] Godsey C B, Pierzynski G M, Mengel D B, Lamond R E . Management of soil acidity in no-till production systems through surface application of lime. Agron J, 2007,99:764-772.
[10] Meng L, Wang B, Zhao X, Ponce K, Qian Q, Ye G . Association mapping of ferrous, zinc and aluminum tolerance at the seedling stage in Indica rice using MAGIC populations. Front Plant Sci, 2017,8:1822. doi: 10.3389/fpls.2017.01822.
[11] Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D . Seed germination and vigor. Annu Rev Plant Biol, 2012,63:507-533.
[12] 马宝慧 . 水稻(Oryza sativa L.)铝毒害及耐性机理. 南京农业大学博士学位论文, 江苏南京, 2007.
Ma B H . The Mechanisms of Aluminum Toxicity and Tolerance in Rice (Oryza Sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007 (in Chinese with English abstract).
[13] 李朝苏, 刘鹏, 徐根娣, 张文君, 陈微微, 王保义 . 铝浸种对荞麦种子萌发和幼苗生理的影响. 生态学报, 2006,26:2041-2047.
Li C S, Liu P, Xu G D, Zhang W J, Chen W W, Wang B Y . Effect of seed soaking with aluminum on seed germination and seedling physiology of buckwheat. Acta Ecol Sin, 2006, 26:2041-2047 (in Chinese with English abstract).
[14] Martins L D, Lopes J C, Laviola B G, Colodetti T V, Rodrigues W N . Selection of genotypes of Jatropha curcas L. for aluminium tolerance using the solution-paper method. Idesia, 2013,31:81-86.
[15] 陈建华, 叶灵静, 刘鹏 . 铝对益母草种子萌发的影响. 种子, 2006,25(1):11-13.
Chen J H, Ye L J, Liu P . The effect of aluminum on germination of Motherwort seeds and roots growth of Motherwort herb. Seed, 2006,25(1):11-13 (in Chinese with English abstract).
[16] 胡萃, 刘强, 龙婉婉, 李芙蓉, 李荣刚 . 铝胁迫对芝麻种子萌发和根系生长的影响. 江苏农业科学, 2009, ( 3):60-62.
Hu C, Liu Q, Long W W, Li F R, Li R G . Effects of aluminum on the seed germinating and root growth in sesame (Sesamum indicum L.), Jiangsu Agric Sci, 2009, ( 3):60-62 (in Chinese with English abstract).
[17] 李立, 周妍, 刘鹏, 陈建华 . 铝对香椿种子萌发的影响. 种子, 2008,27(1):30-34.
Li L, Zhou Y, Liu P, Chen J H . Effect of aluminum on seed germinating of Chinese toona. Seed, 2008,27(1):30-34 (in Chinese with English abstract).
[18] 胡锦勤, 李靖, 尚丹, 文昭竹, 毕金鹏, 张志飞 . 酸铝胁迫对狼尾草种子萌发和幼苗恢复生长的影响. 种子, 2015,34(12):21-25.
Hu J Q, Li J, Shang D, Wen Z Z, Bi J P, Zhang Z F . Effect of acid-aluminum stress on seed germination and seedling growth recovery ability of Pennisetum alopecuroides. Seed, 2015,34(12):21-25 (in Chinese with English abstract).
[19] Ma J F . Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Rev Plant Sci, 2005,24:267-281.
[20] Kochian L V, Piñeros M A, Hoekenga O A . The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil, 2005,274:175-195.
[21] Horst W J, Wang Y, Eticha D . The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot, 2010,106:185-197.
[22] Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z . Rapeseed research and production in China. Crop J, 2017,5:127-135.
[23] Marciano D P R O, Ramos F T, Alvim M N, Magalhaes J R, Franca M G C . Nitric oxide reduces the stress effects of aluminum on the process of germination and early root growth of rice. J Plant Nutr Soil Sci, 2010,173:885-891.
[24] Doncheva S, Amenós M, Poschenrieder C, Barceló J . Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot, 2005,56:1213-1220.
[25] Li M, Qin R, Jiang W, Liu D . Cytogenetical effects of aluminum on root meristem cells of Helianthus annuus L. Bot Sci, 2015,93:1-8.
[26] Takeda K, Ma J F, Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma J F . An aluminum-activated citrate transporter in barley. Plant Cell Physiol, 2007,48:1081-1091.
[27] 武际, 郭熙盛, 李孝勇, 王文军, 朱宏斌 . 连续施用磷钾肥对油菜产量及养分吸收的影响. 中国油料作物学报, 2006,28:180-183.
Wu J, Guo X S, Li X Y, Wang W J, Zhu H B . Effect of P and K fertilizer application on rapeseed yield and nutrient uptake. Chin J Oil Crop Sci, 2006,28:180-183 (in Chinese with English abstract).
[28] Ryan P R, Delhaize E . The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol, 2010,37:275-284.
[29] 熊洁, 邹小云, 陈伦林, 李书宇, 邹晓芬, 宋来强 . 油菜苗期耐铝基因型筛选和鉴定指标的研究. 中国农业科学, 2015,48:3112-3120.
Xiong J, Zou X Y, Chen L L, Li S Y, Zou X F, Song L Q . Screening of rapeseed genotypes with aluminum tolerance at seedling stage and evaluation of selecting indices. Sci Agric Sin, 2015,48:3112-3120 (in Chinese with English abstract).
[30] 黄邦全, 薛小桥, 白景华 . 不同油菜品种(系)耐铝性比较研究. 湖北大学学报(自然科学版), 2001,23:373-376.
Huang B Q, Xue X Q, Bai J H . Comparative study on aluminum tolerance of different rapeseed varieties. J Hubei Agric Univ(Nat Sci Edn), 2001,23:373-376 (in Chinese with English abstract).
[31] Konzak C F, Polle E, Kittrick J A. Screening several crops for aluminum tolerance. In: Workshop on plant adaptation to mineral stress in problem soils. Maryland: Cornell University Press, 1976. pp 311-327
[32] Rosado R D S, Fialho G S, Dias B A S, Rosado T B, Martinez H E P, Laviola B G . Screening Jatropha genotypes for aluminium tolerance using the solution paper method. Semina: Ciencias Agrarias, 2012,33:1273-1280.
[33] Motoda H, Kano Y, Hiragami F, Kawamura K, Matsumoto H . Morphological changes in the apex of pea roots during and after recovery from aluminum treatment. Plant Soil, 2010,333:49-58.
[34] Cançado G M A, Loguercio L L, Martins P R . Hematoxylin staining as a phenotypic index for aluminum toxicity tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet, 1999,99:747-754.
[35] Goh C H, Lee Y . Aluminum toxicity uptake and aluminum toxicity induced rapid root growth inhibition of rice seedlings. Plant Biol, 1999,42:151-158.
[36] Blamey F P C, Nishizawa N K, Yoshimura E . Timing, magnitude and location of initial soluble aluminum injuries to mungbean roots. J Soil Sci Plant Nutr, 2004,50:67-76.
[37] Foy C D, Carter Jr T E, Duke J A, Devine T E . Correlation of shoot and root growth and its role in selecting for A1 tolerance in soybean. J Plant Nutr, 1993,16:305-325.
[38] 陈致富, 李勤菲, 张永晶, 崔艺馨, 许汪洁, 贺亚军, 万华方, 李晓荣, 钱伟 . 白菜型油菜品种萌发期的抗旱性鉴定与筛选. 植物遗传资源学报, 2015,16:15-22.
Chen Z F, Li Q F, Zhang Y J, Cui Y X, Xu W J, He Y J, Wan H F, Li X R, Qian W . Identification and screening of resources with tolerance against drought stress in Brassica rapa during germination stage. J Plant Genet Resour, 2015,16:15-22 (in Chinese with English abstract).
[39] 罗纳德·D·约克奇 . SPSS其实很简单. 北京: 中国人民大学出版社, 2010. pp 216-226.
Ronald D Y. SPSS is Actually Very Simple. Beijing: China Renmin University Press, 2010. pp 216-226(in Chinese).
[40] 唐启义 . DPS数据处理系统: 实验设计统计分析及数据挖掘. 北京: 科学出版社, 2010. pp 86-87, 604-606.
Tang Q Y. DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining. Beijing: Science Press, 2010. pp 86-87, 604-606(in Chinese).
[41] 田蕾, 陈亚萍, 刘俊, 马晓刚, 王娜, 杨兵, 李莹, 郭海东, 李娟, 胡慧, 张银霞, 李培富 . 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017,31:631-642.
Tian L, Chen Y P, Liu J, Ma X G, Wang N, Yang B, Li Y, Guo H D, Li J, Hu H, Zhang Y X, Li P F . Comprehensive evaluation and selection of rice (Oryza sativa japonica) germplasm for saline tolerance at germination stage. Chin J Rice Sci, 2017,31:631-642 (in Chinese with English abstract).
[42] 姜奇彦, 胡正, 张辉, 王萌萌, 唐俊源, 倪志勇, 姜锋 . 大豆种质资源耐盐性鉴定与研究. 植物遗传资源学报. 2012,13:726-732.
Jiang Q Y, Hu Z, Zhang H, Wang M M, Tang J Y, Ni Z Y, Jiang F . Evaluation for salt tolerance in soybean cultivars (Glycine max L. Merrill). J Plant Genet Resour, 2012,13:726-732 (in Chinese with English abstract).
[43] 孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗 . 谷子抗旱相关性状的主成分与模糊聚类分析. 中国农业科学. 2009,42:2667-2675.
Meng Q L, Guan Z B, Feng B L, Chai Y, Hu Y G . Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet (Setaria italica). Sci Agric Sin, 2009,42:2667-2675 (in Chinese with English abstract).
[44] 应小芳, 刘鹏, 徐根娣, 吕群丹, 朱申龙 . 大豆耐铝毒基因型筛选及筛选指标的研究. 中国油料作物学报, 2005,27:46-50.
Ying X F, Liu P, Xu G D, Lyu Q D, Zhu S L . Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indices. Chin J Oil Crop Sci, 2005,27:46-50 (in Chinese with English abstract).
[45] 刘强, 龙婉婉, 胡萃, 方玉生 . 铝胁迫对油菜种子萌发和幼苗生长的影响. 种子, 2009,28(7):5-6.
Liu Q, Long W W, Hu C, Fang Y S . Effects of aluminium stress on Brassica campestris L. seeds germination and seedlings growth. Seed, 2009,28(7):5-6 (in Chinese with English abstract).
[46] 李德华, 贺立源, 刘武定 . 玉米自交系耐铝性评价及根系形态解剖特征. 作物学报, 2004,30:947-952.
Li D H, He L Y, Liu W D . The Al-tolerance evaluation and anatomical characteristics of roots in inbred lines of maize. Acta Agron Sin, 2004,30:947-952 (in Chinese with English abstract).
[47] Guo T R, Zhang G P, Zhou M X, Wu F B, Chen J X . Effects of aluminum toxicity and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant Soil, 2004,258:241-248.
[48] 杨野, 王伟, 刘辉, 叶志娟, 赵竹青, 耿明建 . 铝胁迫对不同耐铝毒小麦品种根伸长生长影响的研究. 植物营养与肥料学报, 2010,16:584-590.
Yang Y, Wang W, Liu H, Ye Z J, Zhao Z Q, Geng M J . Effects of aluminum stress on root elongation of different aluminum tolerance wheat cultivars. Plant Nutr Fert Sci, 2010,16:584-590 (in Chinese with English abstract).
[49] 刘光辉, 陈全家, 吴鹏昊, 曲延英, 高文伟, 杨军善, 杜荣光 . 棉花花铃期抗旱性综合评价及指标筛选. 植物遗传资源学报, 2016,17:53-62.
Liu G H, Chen Q J, Wu P H, Qu Y Y, Gao W W, Yang J S, Du R G . Screening and comprehensive evaluation of drought resistance indices of cotton at blossing and boll-forming stages. J Plant Genet Resour, 2016,17:53-62 (in Chinese with English abstract).
[50] 慈敦伟, 丁红, 张智猛, 宋文武, 戴良香, 符方平, 康涛 . 花生耐盐性评价方法的比较与应用. 花生学报, 2013,42(2):28-35.
Ci D W, Ding H, Zhang Z M, Song W W, Dai L X, Fu F P, Kang T . Comparison and application of different evaluation methods on peanut salt tolerance. J Peanut Sci, 2013,42(2):28-35 (in Chinese with English abstract).
[51] 李青萍, 陈娇, 朱世平, 杨翼飞, 陆智明, 赵晓春 . 柑橘砧木对酸碱耐性的评价. 园艺学报, 2017,44:431-440.
Li Q P, Chen J, Zhu S P, Yang Y F, Lu Z M, Zhao X C . Evaluation of citrus rootstocks for the tolerance to acidity/alkaline stresses. Acta Hortic Sin, 2017,44:431-440 (in Chinese with English abstract).
[52] 邓聚龙 . 灰色控制系统. 武汉: 华中科技大学出版社, 1993. pp 100-124.
Deng J L . Grey Control System. Wuhan: Huazhong University of Science and Technology Press, 1993. pp 100-124(in Chinese).
[53] 王正航, 武仙山, 昌小平, 李润植, 景蕊莲 . 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析. 作物学报, 2010,36:217-227.
Wang Z H, Wu X S, Chang X P, Li R Z, Jing R L . Chlorophyll content and chlorophyll fluorescence kinetics parameters of flag leaf and their gray relational grade with yield in wheat. Acta Agron Sin, 2010,36:217-227 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[7] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[8] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!