作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1649-1658.doi: 10.3724/SP.J.1006.2020.04051
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
张欢1(), 杨乃科1, 商丽丽2, 高晓茹1, 刘庆昌1, 翟红1, 高少培1, 何绍贞1,*()
ZHANG Huan1(), YANG Nai-Ke1, SHANG Li-Li2, GAO Xiao-Ru1, LIU Qing-Chang1, ZHAI Hong1, GAO Shao-Pei1, HE Shao-Zhen1,*()
摘要:
NAC (NAM/ATAF/CUC, NAC)转录因子是植物中特有的转录调控因子, 在植物体的生长发育与逆境胁迫响应等多种生理过程中起着重要的调控作用。本研究利用cDNA末端快速扩增技术(rapid amplification of cDNA ends, RACE)从甘薯品种栗子香中克隆到甘薯抗旱相关基因IbNAC72, 该基因cDNA长为1319 bp, 开放阅读框(open reading frame, ORF)为1008 bp, 编码335个氨基酸, 分子量为37.4 kD, 等电点为8.76, 基因组全长为1199 bp, 含有3个外显子、2个内含子。多重序列比对和系统进化树分析显示, IbNAC72基因与牵牛花中同源基因的亲缘关系最近。实时荧光定量PCR分析表明, IbNAC72基因在甘薯叶片中的表达量显著高于在茎段和根系中; 同时IbNAC72基因受到干旱和盐胁迫显著诱导表达。利用农杆菌介导法转化烟草, 获得过表达IbNAC72基因的转基因烟草植株。对IbNAC72转基因烟草植株的抗旱性分析表明, 在长时间干旱条件下, 转基因植株的根系更加发达, SOD活性显著提高, MDA的含量显著降低, 抗旱性显著提高。本研究表明, IbNAC72是与抗旱性密切相关的基因, 为深入探究IbNAC72抗旱的分子机制提供了基础。
[1] | Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/statistics/en/, 2020.5. |
[2] | 王莺, 赵文, 张强. 中国北方地区农业干旱脆弱性评价. 中国沙漠, 2019, (4):150-158. |
Wang Y, Zhao W, Zhang Q. Evaluation of agricultural drought vulnerability in Northern China. J Desert Res, 2019, (4):150-158 (in Chinese with English abstract). | |
[3] | 贾敬敦, 张富. 依靠科技创新推进我国盐碱地资源可持续利用. 中国农业科技导报, 2014,16(5):1-7. |
Jia J D, Zhang F. Sustainable utilization of saline-alkali land resources through scientific and technological innovation in China. J Agric Sci Technol, 2014,16(5):1-7 (in Chinese with English abstract). | |
[4] | 胡兴旺, 金杭霞, 朱丹华. 植物抗旱耐盐机理的研究进展. 中国农学通报, 2015,31(24):137-142. |
Hu X W, Jin H X, Zhu D H. Research progress of drought and salt resistant mechanism of plant. Chin Agric Sci Bull, 2015,31(24):137-142 (in Chinese with English abstract). | |
[5] |
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A lipid-anchored NAC transcription factor is translocated into the nucleus and activatesGlyoxalase I expression during drought stress. Plant Cell, 2017,29:1748-1772.
pmid: 28684428 |
[6] |
Elena B, Annamaria G, Eleonora C. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015,16:15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177 |
[7] | Eckardt N A. DREB duo defines distinct drought and cold response pathways. Plant Cell, 2019,6:1196-1197. |
[8] |
Chen J, Nolan T M, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell, 2017,29:1425-1439.
pmid: 28576847 |
[9] |
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S. A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019,223:1918-1936.
pmid: 31091337 |
[10] | 王芳, 孙立娇, 赵晓宇, 王婕婉, 宋兴舜. 植物NAC转录因子的研究进展. 生物技术通报, 2019,35(4):88-93. |
Wang F, Sun L J, Zhao X Y, Wang J W, Song X S. Research progresses on plant NAC transcription factors. Biotechnol Bull, 2019,35(4):88-93 (in Chinese with English abstract). | |
[11] |
Nakashima K, Tran L, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007,51:617-630.
pmid: 17587305 |
[12] |
Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009,379:985-989.
doi: 10.1016/j.bbrc.2008.12.163 pmid: 19135985 |
[13] |
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006,103:12987-12992.
pmid: 16924117 |
[14] |
Yuan X, Wang H, Cai J, Bi Y, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019,19:278-284.
doi: 10.1186/s12870-019-1883-y pmid: 31238869 |
[15] |
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme- Takagi M, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J, 2004,39:863-876.
doi: 10.1111/j.1365-313X.2004.02171.x pmid: 15341629 |
[16] | Lu M, Zhang D, Shi Y, Song Y, Li Y, Wang T. Overexpression of a stress induced maize NAC transcription factor gene, ZmSNAC1, improved drought and salt tolerance in Arabidopsis. Acta Agron Sin, 2013,39:2177-2182. |
[17] |
Xu Z, Kim S, Hyeon D, Kim D, Dong T, Park Y, Jin J, Joo S, Kim S, Hong J, Hwang D, Hwang I. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell, 2013,25:4708-4724.
pmid: 24285786 |
[18] |
Sakuraba Y, Kim Y, Han S, Lee B, Paek N. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed- forward regulatory loop involving NAP. Plant Cell, 2015,27:1771-1787.
pmid: 26059204 |
[19] |
Thirumalaikumar V, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018,16:354-366.
doi: 10.1111/pbi.12776 pmid: 28640975 |
[20] | Al Abdallat A, Ayad J, Elenein J, Al Ajlouni Z, Harwood W. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley(Hordeum vulgare L.). Mol Breed, 2014,33:401-414. |
[21] | Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic, 2016,201:153-166. |
[22] |
Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J, 2016,14:592-602.
pmid: 26011089 |
[23] |
Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci, 2018,272:243-254.
doi: 10.1016/j.plantsci.2018.05.005 pmid: 29807598 |
[24] | Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019,18:9-23. |
[25] | 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 344-362. |
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 344-362(in Chinese). | |
[26] |
Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901.
pmid: 3327686 |
[27] | 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011,17:596-606. |
Li W, Han L, Qian Y Q, Sun Z Y. Characteristics and functions of NAC transcription factors in plants. Chin J Appl Environ Biol, 2011,17:596-606 (in Chinese with English abstract). | |
[28] |
Li X, Li X, Li M, Yan Y, Liu X, Li L. Dual function of NAC072 in ABF3-mediated ABA-responsive gene regulation in Arabidopsis. Front Plant Sci, 2016,7:1075.
pmid: 27486475 |
[29] |
Guan H, Liu X, Niu F, Zhao Q, Fan N, Cao D, Fu Y. OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front Plant Sci, 2019,10:890.
pmid: 31354764 |
[30] |
Wu H, Fu B, Sun P, Xiao C, Liu J. A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiol, 2016,172:1532-1547.
pmid: 27663409 |
[31] | Mao H, Li S, Wang Z, Cheng X, Li F, Mei F, Chen N, Kang Z. Regulatory changes in TaSNAC8 are associated with drought tolerance in wheat seedlings. Plant Biotechnol J, 2019,10:1-15. |
[32] |
Chen D, Chai S, Mcintyre C L, Xue G P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Rep, 2017,37:225-237.
pmid: 29079898 |
[33] | 王建华, 刘鸿先, 徐同. 超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理通讯, 1989, (1):1-7. |
Wang J H, Liu H X, Xu T. The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant. Plant Physiol Commun, 1989, (1):1-7 (in Chinese with English abstract). | |
[34] |
Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. Plant Cell, 2020,32:1102-1123.
pmid: 32034034 |
[1] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[2] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[6] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[7] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[8] | 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727. |
[9] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[10] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[11] | 胡蕊洁, 杨向芸, 贾磊, 李玉如, 项月, 岳洁瑜, 王华忠. 病毒介导的GFP-ATG8在小麦上的表达和在自噬活性监测上的应用[J]. 作物学报, 2021, 47(12): 2371-2378. |
[12] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[13] | 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052. |
[14] | 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207. |
[15] | 李晶岚,陈鑫欣,石翠翠,刘方惠,孙静,葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224. |
|