欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1649-1658.doi: 10.3724/SP.J.1006.2020.04051

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

甘薯抗旱相关基因IbNAC72的克隆与功能分析

张欢1(), 杨乃科1, 商丽丽2, 高晓茹1, 刘庆昌1, 翟红1, 高少培1, 何绍贞1,*()   

  1. 1 中国农业大学农业农村部甘薯生物学与生物技术重点实验室 / 教育部作物杂种优势研究与利用重点实验室, 北京 100193
    2 山东省烟台市农业科学研究院, 山东烟台 265500
  • 收稿日期:2020-02-29 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-13
  • 通讯作者: 何绍贞
  • 作者简介:E-mail:zhanghuan1111@cau.edu.cn, Tel: 010-62732559
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD1000700);本研究由国家重点研发计划项目(2018YFD1000704);北京粮经创新团队项目(BAIC09-2020);国家现代产业技术体系建设专项(CARS-10,甘薯)

Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato

ZHANG Huan1(), YANG Nai-Ke1, SHANG Li-Li2, GAO Xiao-Ru1, LIU Qing-Chang1, ZHAI Hong1, GAO Shao-Pei1, HE Shao-Zhen1,*()   

  1. 1 Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
    2 Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
  • Received:2020-02-29 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-13
  • Contact: Shao-Zhen HE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD1000700);This study was supported by the National Key Research and Development Program of China(2018YFD1000704);the Beijing Food Crops Innovation Consortium Program(BAIC09-2020);the China Agriculture Research System(CARS-10,甘薯)

摘要:

NAC (NAM/ATAF/CUC, NAC)转录因子是植物中特有的转录调控因子, 在植物体的生长发育与逆境胁迫响应等多种生理过程中起着重要的调控作用。本研究利用cDNA末端快速扩增技术(rapid amplification of cDNA ends, RACE)从甘薯品种栗子香中克隆到甘薯抗旱相关基因IbNAC72, 该基因cDNA长为1319 bp, 开放阅读框(open reading frame, ORF)为1008 bp, 编码335个氨基酸, 分子量为37.4 kD, 等电点为8.76, 基因组全长为1199 bp, 含有3个外显子、2个内含子。多重序列比对和系统进化树分析显示, IbNAC72基因与牵牛花中同源基因的亲缘关系最近。实时荧光定量PCR分析表明, IbNAC72基因在甘薯叶片中的表达量显著高于在茎段和根系中; 同时IbNAC72基因受到干旱和盐胁迫显著诱导表达。利用农杆菌介导法转化烟草, 获得过表达IbNAC72基因的转基因烟草植株。对IbNAC72转基因烟草植株的抗旱性分析表明, 在长时间干旱条件下, 转基因植株的根系更加发达, SOD活性显著提高, MDA的含量显著降低, 抗旱性显著提高。本研究表明, IbNAC72是与抗旱性密切相关的基因, 为深入探究IbNAC72抗旱的分子机制提供了基础。

关键词: 甘薯, NAC转录因子, IbNAC72, 过表达, 抗旱

Abstract:

NAC (NAM/ATAF/CUC) is a plant-specific transcription factor family, which plays an important role in plant growth, development and stress responses. In this study, we cloned IbNAC72, a drought tolerance-related gene from sweet potato [Ipomoea batatas (L.) Lam.] variety Lizixiang by RACE method. The IbNAC72 cDNA of 1319 bp in length, had an open reading frame (ORF) of 1008 bp, and encoded a 335 amino acids polypeptide, with a molecular weight of 37.4 kD and an isoelectric point (pI) of 8.76. The genomic DNA of IbNAC72 gene was 1199 bp and was deduced to contain 3 exons and 2 introns. Sequence alignment and phylogenetic analysis revealed that IbNAC72 had a close relationship with the predicted protein products of Ipomoea nil. RT-qPCR analysis showed that IbNAC72 was expressed at the highest level in the leaves of sweet potato, and it was strongly induced by PEG-6000 and NaCl, respectively. IbNAC72 was transformed into tobacco via Agrobacterium-mediated transformation. Its overexpression significantly enhanced drought tolerance in the transgenic tobacco plants. Under drought stress, transgenic plants developed stronger root system; the SOD activity was significantly increased whereas the MDA content was significantly decreased in transgenic plants compared to those of wild type plants. This study showed that IbNAC72 gene was closely related to drought tolerance, providing a basis for in-depth study on the drought tolerance molecular mechanism of IbNAC72 in sweet potato.

Key words: sweet potato, NAC transcription factor, IbNAC72, overexpression, drought tolerance

表1

IbNAC72基因克隆和功能分析所用引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Function
NAC-1 CGGAAAGTTGGGATCAAGAA 3′-RACE扩增
NAC-2 CAGGAAGACCGGAAGTTCAA 3′-RACE amplification
NAC-3 TTGAACTTCCGGTCTTCCTG 5′-RACE扩增
NAC-4 ATTCGCCCTGCTAGGAAGAT 5′-RACE amplification
NAC-F ATGGGTGTGAAAGATATGGACC ORF、DNA序列扩增
NAC-R TTACTGCCTGAACGCTAAGCTAC ORF and DNA sequence amplification
NAC-QF TCTTCAACAAGACGACAAGTCAAG RT-qPCR检测
NAC-QR AGGAAAACTCAATGCCATTG RT-qPCR detection
Actin-F AGCAGCATGAAGATTAAGGTTGTAGCAC 甘薯内参基因检测
Actin-R TGGAAAATTAGAAGCACTTCCTGTGAAC Sweet potato internal control
NAC-OE-F (Xba I) GCTCTAGAATGGGTGTGAAAGATATGGACC 过表达载体构建
NAC-OE-R (Sac I) CGAGCTCTTACTGCCTGAACGCTAAGCTAC Construction of overexpression vector

图1

IbNAC72基因的序列分析 A: 不同物种中NAC72同源蛋白序列的多重比较; 红色线标注为a~e 5个亚结构域。B: 不同物种中NAC72蛋白序列的同源进化树分析。C: IbNAC72与拟南芥AtNAC72的基因组结构比较; 方框表示外显子, 直线表示内含子。"

图2

IbNAC72基因的表达分析 A: IbNAC72基因在栗子香试管苗不同组织中的表达分析; B: IbNAC72基因在栗子香大田植株不同组织中的表达分析; C: IbNAC72基因在100 mmol L-1 NaCl胁迫处理下的表达分析; D: IbNAC72基因在20% PEG-6000胁迫处理下的表达分析。数据表示为平均值 ± SD (n = 3)。采用单因素方差分析法对数据进行统计分析, 柱上不同的小写字母代表柱值在0.05水平差异显著。"

图3

IbNAC72基因过表达载体的构建与鉴定 A: IbNAC72基因ORF的PCR扩增; B: 过表达载体pC3301- 121-IbNAC72的酶切鉴定。"

图4

IbNAC72转基因烟草植株的获得及鉴定 A~D: IbNAC72基因转化烟草的转化、筛选和再生过程; E~I: 转基因烟草植株叶片、茎段和根系的GUS染色呈阳性, WT呈阴性; H: IbNAC72转基因烟草植株的PCR分析; I: 转基因烟草植株IbNAC72基因的表达分析。M: DL2000 marker; W: 水作为阴性对照; P: 质粒pCAMBIA3301-121-IbNAC72作为阳性对照; C: WT作为阴性对照; WT: 野生型烟草植株; T1~T3: 过表达IbNAC72烟草株系。数据表示为平均值 ± SD (n = 3)。** 表示用Student’s t-test在0.01水平差异显著。"

图5

IbNAC72基因的过表达提高了转基因烟草植株的抗旱性 A: 干旱胁迫4周后, 转基因烟草和野生型烟草植株的生长状态比较; B: 干旱胁迫4周后, 转基因烟草和野生型烟草植株株高的比较分析; C: 干旱胁迫4周后, 转基因烟草和野生型烟草植株根系的生长状态比较; D: 干旱胁迫4周后, 转基因烟草和野生型烟草植株根系鲜重的比较分析。数据表示为平均值 ± SD (n = 3)。** 表示用Student’s t-test在0.01水平差异显著。缩写同图4。"

图6

干旱胁迫对转基因植株中SOD活性和MDA积累量的影响 A: 干旱胁迫4周后, 转基因烟草和野生型烟草植株的超氧化物歧化酶(SOD)活性; B: 干旱胁迫4周后, 转基因烟草和野生型烟草植株的丙二醛(MDA)含量。数据表示为means ± SD (n = 3)。** 表示用Student’s t-test在0.01水平差异显著。缩写同图4。"

[1] Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/statistics/en/, 2020.5.
[2] 王莺, 赵文, 张强. 中国北方地区农业干旱脆弱性评价. 中国沙漠, 2019, (4):150-158.
Wang Y, Zhao W, Zhang Q. Evaluation of agricultural drought vulnerability in Northern China. J Desert Res, 2019, (4):150-158 (in Chinese with English abstract).
[3] 贾敬敦, 张富. 依靠科技创新推进我国盐碱地资源可持续利用. 中国农业科技导报, 2014,16(5):1-7.
Jia J D, Zhang F. Sustainable utilization of saline-alkali land resources through scientific and technological innovation in China. J Agric Sci Technol, 2014,16(5):1-7 (in Chinese with English abstract).
[4] 胡兴旺, 金杭霞, 朱丹华. 植物抗旱耐盐机理的研究进展. 中国农学通报, 2015,31(24):137-142.
Hu X W, Jin H X, Zhu D H. Research progress of drought and salt resistant mechanism of plant. Chin Agric Sci Bull, 2015,31(24):137-142 (in Chinese with English abstract).
[5] Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A lipid-anchored NAC transcription factor is translocated into the nucleus and activatesGlyoxalase I expression during drought stress. Plant Cell, 2017,29:1748-1772.
pmid: 28684428
[6] Elena B, Annamaria G, Eleonora C. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015,16:15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177
[7] Eckardt N A. DREB duo defines distinct drought and cold response pathways. Plant Cell, 2019,6:1196-1197.
[8] Chen J, Nolan T M, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell, 2017,29:1425-1439.
pmid: 28576847
[9] Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S. A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019,223:1918-1936.
pmid: 31091337
[10] 王芳, 孙立娇, 赵晓宇, 王婕婉, 宋兴舜. 植物NAC转录因子的研究进展. 生物技术通报, 2019,35(4):88-93.
Wang F, Sun L J, Zhao X Y, Wang J W, Song X S. Research progresses on plant NAC transcription factors. Biotechnol Bull, 2019,35(4):88-93 (in Chinese with English abstract).
[11] Nakashima K, Tran L, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007,51:617-630.
pmid: 17587305
[12] Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009,379:985-989.
doi: 10.1016/j.bbrc.2008.12.163 pmid: 19135985
[13] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006,103:12987-12992.
pmid: 16924117
[14] Yuan X, Wang H, Cai J, Bi Y, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019,19:278-284.
doi: 10.1186/s12870-019-1883-y pmid: 31238869
[15] Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme- Takagi M, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J, 2004,39:863-876.
doi: 10.1111/j.1365-313X.2004.02171.x pmid: 15341629
[16] Lu M, Zhang D, Shi Y, Song Y, Li Y, Wang T. Overexpression of a stress induced maize NAC transcription factor gene, ZmSNAC1, improved drought and salt tolerance in Arabidopsis. Acta Agron Sin, 2013,39:2177-2182.
[17] Xu Z, Kim S, Hyeon D, Kim D, Dong T, Park Y, Jin J, Joo S, Kim S, Hong J, Hwang D, Hwang I. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell, 2013,25:4708-4724.
pmid: 24285786
[18] Sakuraba Y, Kim Y, Han S, Lee B, Paek N. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed- forward regulatory loop involving NAP. Plant Cell, 2015,27:1771-1787.
pmid: 26059204
[19] Thirumalaikumar V, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018,16:354-366.
doi: 10.1111/pbi.12776 pmid: 28640975
[20] Al Abdallat A, Ayad J, Elenein J, Al Ajlouni Z, Harwood W. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley(Hordeum vulgare L.). Mol Breed, 2014,33:401-414.
[21] Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic, 2016,201:153-166.
[22] Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J, 2016,14:592-602.
pmid: 26011089
[23] Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci, 2018,272:243-254.
doi: 10.1016/j.plantsci.2018.05.005 pmid: 29807598
[24] Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J Integr Agric, 2019,18:9-23.
[25] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 344-362.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 344-362(in Chinese).
[26] Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901.
pmid: 3327686
[27] 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011,17:596-606.
Li W, Han L, Qian Y Q, Sun Z Y. Characteristics and functions of NAC transcription factors in plants. Chin J Appl Environ Biol, 2011,17:596-606 (in Chinese with English abstract).
[28] Li X, Li X, Li M, Yan Y, Liu X, Li L. Dual function of NAC072 in ABF3-mediated ABA-responsive gene regulation in Arabidopsis. Front Plant Sci, 2016,7:1075.
pmid: 27486475
[29] Guan H, Liu X, Niu F, Zhao Q, Fan N, Cao D, Fu Y. OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front Plant Sci, 2019,10:890.
pmid: 31354764
[30] Wu H, Fu B, Sun P, Xiao C, Liu J. A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiol, 2016,172:1532-1547.
pmid: 27663409
[31] Mao H, Li S, Wang Z, Cheng X, Li F, Mei F, Chen N, Kang Z. Regulatory changes in TaSNAC8 are associated with drought tolerance in wheat seedlings. Plant Biotechnol J, 2019,10:1-15.
[32] Chen D, Chai S, Mcintyre C L, Xue G P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Rep, 2017,37:225-237.
pmid: 29079898
[33] 王建华, 刘鸿先, 徐同. 超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理通讯, 1989, (1):1-7.
Wang J H, Liu H X, Xu T. The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant. Plant Physiol Commun, 1989, (1):1-7 (in Chinese with English abstract).
[34] Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. Plant Cell, 2020,32:1102-1123.
pmid: 32034034
[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[6] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[9] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[10] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[11] 胡蕊洁, 杨向芸, 贾磊, 李玉如, 项月, 岳洁瑜, 王华忠. 病毒介导的GFP-ATG8在小麦上的表达和在自噬活性监测上的应用[J]. 作物学报, 2021, 47(12): 2371-2378.
[12] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[13] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[14] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[15] 李晶岚,陈鑫欣,石翠翠,刘方惠,孙静,葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!