欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1659-1666.doi: 10.3724/SP.J.1006.2020.04073

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯高效染色体加倍方法建立与抗寒资源创制

董建科(), 涂卫, 王海波, 应静文, 杜鹃, 赵喜娟, 赵庆浩, 黄维, 蔡兴奎*(), 宋波涛*()   

  1. 华中农业大学园艺林学学院 / 园艺植物生物学教育部重点试验室 / 农业农村部马铃薯生物学与生物技术重点试验室, 湖北武汉 430070
  • 收稿日期:2020-03-19 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-16
  • 通讯作者: 蔡兴奎,宋波涛
  • 作者简介:E-mail:1358913581@qq.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-09-P07);国家自然科学基金项目(31871685)

Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato

DONG Jian-Ke(), TU Wei, WANG Hai-Bo, YING Jing-Wen, DU Juan, ZHAO Xi-Juan, ZHAO Qing-Hao, HUANG Wei, CAI Xing-Kui*(), SONG Bo-Tao*()   

  1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University / Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2020-03-19 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-16
  • Contact: Xing-Kui CAI,Bo-Tao SONG
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-09-P07);and the National Natural Science Foundation of China(31871685)

摘要:

利用不同秋水仙素处理浓度、处理方式、处理时间对马铃薯试管苗茎段进行处理,研究了不同处理组合对试管苗成活率和加倍效率的影响, 筛选获得了马铃薯染色体加倍优化处理组合。结果表明, 0.1%秋水仙素浓度在120转 min-1的条件下处理马铃薯试管苗茎段3d的加倍效率最高,该处理方法结合摇床转动处理,使秋水仙素与处理茎段接触更充分,较其他马铃薯染色体加倍技术具有加倍率更高、加倍时间更短且操作简便等优点, 为马铃薯倍性操作提供了高效方法。同时, 加倍的种间杂种材料农艺性状与原始二倍体相比,加倍获得的四倍体材料在植株株高、茎粗、花瓣大小及花粉粒大小等方面均有明显增强,且抗寒能力和二倍体种间杂种相当,较普通马铃薯栽培种显著增强,可为马铃薯栽培种的抗寒遗传改良提供良好的材料基础。

关键词: 马铃薯, 秋水仙素, 染色体加倍技术, 抗寒能力

Abstract:

In this work, different treatment combinations including colchicine concentrations and treatment methods as well as different time points was used to investigate the survival rate and chromosome doubling efficiency of potato tissue culture plantlets. The potato chromosome doubling by using colchicine had been successfully optimized. The potato plantlet stems treated with 0.1% colchicine for three days shaking at 120 r min-1 showed the highest doubling efficiency due to its better contact to the colchicine solution. Compared with other potato chromosome doubling techniques, this method has much higher chromosome doubling rate, shorter time treatment and easier to operate, so that it could provide a higher efficient method for potato ploidy operation. In the meantime, compared with the diploid, the tetraploid interspecific hybrids showed differences in the morphological characteristic, which had higher plants, thicker stem, bigger petals and pollen grain. In addition, no significant difference was found between diploid and tetraploid interspecific hybrids in terms of cold resistance, but both significantly enhanced cold resistance compared with the common potato cultivar. Taken together, the doubled interspecific hybrids could sever for improving cold resistance of potato cultivars.

Key words: potato, colchicine, chromosome doubling, cold resistance

图1

加倍处理装置及对照处理植株长势 A: 加倍处理装置, 红色箭头所指位置为PCR板剪孔位置; B: 对照处理植株长势。"

图2

秋水仙素处理材料成活率统计 数值为平均值±SE (n=4)。A-3: A浓度(0.05%)处理3 d; B-3: B浓度(0.10%)处理3 d; C-3: C浓度(0.25%)处理3 d; D-3: D浓度(0.50%)处理3 d。"

图3

加倍处理材料倍性鉴定 A: AC142; B: E3; C: 未加倍材料; D: 四倍体; E: 三倍体; F, G: 嵌合体; H: 对照。"

图4

加倍材料染色体数目检测 A: 对照FT073-4; B, C: 加倍四倍体材料。"

图5

秋水仙素处理材料加倍率统计 数值为平均值±SE (n=4)。A-3-0: A浓度(0.05%)处理3 d, 转速为0转 min-1; A-3-120: A浓度(0.05%)处理3 d, 转速为120转 min-1; B-3-0: B浓度(0.10%)处理3 d, 转速为0转 min-1; B-3-120: B浓度(0.10%)处理3 d, 转速为120转 min-1。"

图6

部分加倍株系植株表型 A: FT073-4; B: T-FT073-4-7。数值为平均值±SE (n ≥ 5)。* 表示在0.05水平上显著相关, ** 表示在0.01水平上显著相关。"

图7

加倍材料抗寒能力检测 数值为平均值±SE (n=3)。柱子上方的字母表示在P < 0.05水平上的差异显著性。"

[1] Vega S E, Bamberg J B. Screening the US potato collection for frost hardiness. Am Potato J, 1995,72:13-21.
doi: 10.1007/BF02874375
[2] Luthra S K, Gopal J, Manivel P, Kumar V, Singh B P, Pandey S K. A frost tolerant clone (SS 2040) of cultivated tetraploid potato species Solanum tuberosum ssp. andigena. Ind J Genet Plant Breed, 2010,70:103.
[3] Hawkes J G. The Potato: Evolution, Biodiversity and Genetic Resources. London: Belhaven Press, 1990. pp 1-259.
[4] Bradshaw J E, Bryan G J, Ramsay G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Res, 2006,49:49-65.
doi: 10.1007/s11540-006-9002-5
[5] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014,80:283-383.
doi: 10.1007/s12229-014-9146-y
[6] Carputo D, Barone A. Ploidy level manipulations in potato through sexual hybridisation. Ann Appl Biol, 2005,146:71-79.
doi: 10.1111/aab.2005.146.issue-1
[7] Johnstone F E. Chromosome doubling in potatoes induced by colchicine treatment. Am Potato J, 1939,16:288-304.
doi: 10.1007/BF02861918
[8] Karp A, Risiott R, Jones M G K, Bright S W. Chromosome doubling in monohaploid and dihaploid potatoes by regeneration from cultured leaf explants. Plant Cell Tissue Organ Cult, 1984,3:363-373.
doi: 10.1007/BF00043089
[9] 张艳萍, 蒲秀琴. 秋水仙素诱导马铃薯野生种S. acaule多倍体的初步研究. 中国种业, 2018, (6):66-68.
Zhang Y P, Pu X Q. A preliminary study on colchicine induced S. acaule polyploid in wild potato species. China Seed Ind, 2018, (6):66-68 (in Chinese with English abstract).
[10] Dpooležel J, Binarová P, Lcretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant, 1989,31:113-120.
doi: 10.1007/BF02907241
[11] Zhao Z F, Wang Y H, Huang S P. Plant chromosome count. For Res, 1990,5:503-508.
[12] Ugborogho R E, Oyelana O A. Meiosis, pollen morphology and perianth stomata of some taxa of Amaranthus L.(Amaranthaceae) in Nigeria. Feddes Rep, 1992,103:363-373.
doi: 10.1002/fedr.v103:5/6
[13] Steffen K L, Arora R, Palta J P. Relative sensitivity of photosynthesis and respiration to freeze-thaw stress in herbaceous species: importance of realistic freeze-thaw protocols. Plant Physiol, 1989,4:1372-1379.
[14] Levin D A. Polyploidy and novelty in flowering plants. Am Nat, 1983,122:1-25.
doi: 10.1086/284115
[15] De Maine M J. Comparisons of cell characters in leaves of dihaploid potatoes, their chromosome-doubled derivatives and parthenogenetic tetraploid parents. Potato Res, 1987,30:253-266.
doi: 10.1007/BF02357667
[16] Sattler M C, Carvalho C R, Clarindo W R. The polyploidy and its key role in plant breeding. Planta, 2016,243:281-296.
pmid: 26715561
[17] Yang J, Wang J, Liu Z, Xiong T, Lan J, Han Q, Kang X. Megaspore chromosome doubling in Eucalyptus urophylla S. T. Blake induced by colchicine treatment to produce triploids. Forests, 2018,9:728.
doi: 10.3390/f9110728
[18] De Maine M J, Fantes J A. The results of colchicine treatment of dihaploids and their implications regarding efficiency of chromosome doubling and potato histogeny. Potato Res, 1983,26:289-294.
doi: 10.1007/BF02356150
[19] 王清, 王蒂, 司怀军, 戴朝曦. 马铃薯体细胞染色体加倍的研究. 中国马铃薯, 2001, (6):343-349.
Wang Q, Wang D, Si H J, Dai Z X. Study on chromosome doubling in potato somatic cells. Chin Potato J, 2001, (6):343-349 (in Chinese with English abstract).
[20] 刘磊. 秋水仙素对马铃薯多倍体诱导的初步研究. 农业科技通讯, 2019, (3):113-116.
Liu L. Preliminary study of colchicine induced polyploid in potato. Bull Agric Sci Technol, 2019, (3):113-116 (in Chinese with English abstract).
[21] 吴青青, 胡小京, 崔嵬, 杨澜, 石乐娟, 许红娟, 班甜甜, 夏景烽. 秋水仙素诱导百合黄精灵多倍体研究. 种子, 2019,38(11):96-100.
Wu Q Q, Hu X J, Cui W, Yang L, Shi L J, Xu H J, Ban T T, Xia J F. Study on polyploid induction of lily yelloween by colchicine. Seed, 2019,38(11):96-100 (in Chinese with English abstract).
[22] Preiszner J, Feher A, Veisz O, Sutka J, Dudits D. Characterization of morphological variation and cold resistance in interspecific somatic hybrids between potato (Solanum tuberosum L.) and S. brevidens Phil. Euphytica, 1991,57:37-46.
[23] Cardi T, D'Ambrosio E, Consoli D, Puite K J, Ramulu K S. Production of somatic hybrids between frost-tolerant Solanum
pmid: 24190212
commersonii and S. tuberosum: characterization of hybrid plants. Theor Appl Genet, 1993,87:193-200.
doi: 10.1007/BF00223764 pmid: 24190212
[24] 邹莹. 马铃薯抗寒资源和抗寒群体创制. 华中农业大学硕士学位论文,湖北武汉, 2016.
Zou Y. Development of New Germplasms and Segregating Population to Cold Resistance in Potato . MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[25] 徐志君. 马铃薯多倍体的诱导及其快速鉴定方法的建立. 内蒙古大学硕士学位论文, 内蒙古呼和浩特, 2016.
Xu Z J. Induction of Polyploid Potato and Establishment of Rapid Identification Method. MS Thesis of Inner Mongolia University, Huhhot, Inner Mongolia, China, 2016 (in Chinese with English abstract).
[26] Nirula K K, Nayar N M, Bassi K K, Singh G. Reaction of tuber-bearing Solanum species to root knot nematode, meloidogyne incognita. Am Potato J, 1967,44:66-69.
doi: 10.1007/BF02893240
[27] De Galarreta J I R, Carrasco A, Salazar A, Barrena I, Iturritxa E, Marquinez R, Legorburu F J, Ritter E. Wild Solanum species as resistance sources against different pathogens of potato. Potato Res, 1998,41:57-68.
doi: 10.1007/BF02360262
[28] Bains P S, Bisht V S, Lynch D R, Kawchuk L M, Helgeson J P. Identification of stem soft rot (Erwinia carotovora subspecies atroseptica) resistance in potato. Am J Potato Res, 1999,76:137-141.
doi: 10.1007/BF02853578
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!