作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1862-1869.doi: 10.3724/SP.J.1006.2020.04045
陈杉彬(), 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红*()
Shan-Bin CHEN(), Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI*()
摘要:
CAF1 (CCR4-associated factor 1)基因在植物发育、抗病等方面发挥着重要的作用。本研究根据前期获得的差异表达EST序列, 克隆得到甘薯IbCAF1基因。IbCAF1基因的开放阅读框(open reading frame, ORF)长度为846 bp, 编码281个氨基酸, 分子量为32.13 kD, 等电点为4.83。氨基酸序列比对和系统进化树分析表明, IbCAF1与甘薯近缘野生种Ipomoea triloba (2x)同源蛋白ItlCAF1有较高的同源性, 序列一致性为96.8%。IbCAF1基因受到NaCl、PEG、ABA和H2O2的诱导表达。利用根癌农杆菌介导法将IbCAF1基因转入烟草, 过表达IbCAF1基因显著提高了转基因烟草植株的耐盐性和抗旱性。在200 mmol L -1 NaCl和10% PEG-6000的胁迫下, IbCAF1基因的过表达显著上调了转基因烟草植株中活性氧清除系统和脯氨酸合成相关基因的表达, 增加了SOD活性、POD活性、脯氨酸含量, 降低了H2O2含量和丙二醛含量。表明IbCAF1基因能够提高转基因烟草植株的耐盐性和抗旱性。本研究为后续甘薯IbCAF1基因耐盐抗旱基因工程研究奠定了基础。
[1] |
Munns R, Tester M . Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[2] |
王佳丽, 黄贤金, 钟太洋, 陈志刚 . 盐碱地可持续利用研究综述. 地理学报, 2011,66:673-684.
doi: 10.11821/xb201105010 |
Wang J L, Huang X J, Zhong T Y, Chen Z G . Review on sustainable utilization of salt-affected land. Acta Geogr Sin, 2011,66:673-684 (in Chinese with English abstract). | |
[3] |
Yang S J, Vanderbeld B, Wan J X, Huang Y F . Narrowing down the targets: towards successful genetic engineering of drought tolerant crops. Mol Plant, 2010,3:469-490.
doi: 10.1093/mp/ssq016 pmid: 20507936 |
[4] |
Molin L, Puisieux A . C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene, 2005,358:73-81.
doi: 10.1016/j.gene.2005.05.023 pmid: 16039072 |
[5] |
Collart M A . The CCR4-NOT complex is a key regulator of eukaryotic gene expression. WIREs RNA, 2016,7:438-454.
doi: 10.1002/wrna.1332 pmid: 26821858 |
[6] |
Berthet C, Morera A M, Asensio M J, Chauvin M A, Morel A P, Dijoud F, Magaud J P, Durand P, Rouault J P . CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Mol Cell Biol, 2004,24:5808-5820.
doi: 10.1128/MCB.24.13.5808-5820.2004 pmid: 15199137 |
[7] |
Cui Y J, Ramnarain D B, Chiang Y C, Ding L H, McMahon J S, Denis C L . Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol Genet Genomics, 2008,279:323-337.
doi: 10.1007/s00438-007-0314-1 pmid: 18214544 |
[8] |
Feng L K, Yan Y B . The N-terminus modulates human Caf1 activity, structural stability and aggregation. Int J Biol Macromol, 2012,51:497-503.
doi: 10.1016/j.ijbiomac.2012.05.032 pmid: 22683897 |
[9] |
Sarowar S, Oh H W, Cho H S, Baek K H, Seong E S, Joung Y H, Choi G J, Lee S, Choi D . Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J, 2007,51:792-802.
doi: 10.1111/j.1365-313X.2007.03174.x pmid: 17587232 |
[10] |
Liang W X, Li C B, Liu F, Jiang H L, Li S Y, Sun J Q, Wu X Y, Li C Y . The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res, 2009,19:307-316.
doi: 10.1038/cr.2008.317 pmid: 19065152 |
[11] |
Kwon T, Yi Y B, Nam J . Overexpression of AtCAF1, CCR4-associated factor 1 homologue in Arabidopsis thaliana, negatively regulates wounding-mediated disease resistance. J Plant Biotechnol, 2011,38:278-284.
doi: 10.5010/JPB.2011.38.4.278 |
[12] |
Shimo H M, Terassi C, Lima Silva C C, de Lima Zanella J, Mercaldi G F, Rocco S A, Benedetti C E . Role of the Citrus sinensis RNA deadenylase CsCAF1 in citrus canker resistance. Mol Plant Pathol, 2019,20:1105-1118.
doi: 10.1111/mpp.12815 pmid: 31115151 |
[13] |
Walley J W, Kelley D R, Nestorova G, Hirschberg D L, Dehesh K . Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol, 2010,152:866-875.
doi: 10.1104/pp.109.149005 pmid: 19955262 |
[14] | Liu Q C . Sweet potato omics and biotechnology in China. Plant OMICS: J Plant Mol Biol Omics, 2011,4:295. |
[15] |
Park S C, Kim Y H, Jeong J C, Kim C Y, Lee H S, Bang J W, Kwak S S . Sweetpotato late embryogenesis abundant 14 ( IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta, 2011,233:621-634.
doi: 10.1007/s00425-010-1326-3 |
[16] |
Kim S H, Ahn Y O, Ahn M J, Lee H S, Kwak S S . Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 2012,74:69-78.
doi: 10.1016/j.phytochem.2011.11.003 |
[17] |
Kim S H, Kim Y H, Ahn Y O, Ahn M J, Jeong J C, Lee H S, Kwak S S . Downregulation of the lycopene ε-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plant, 2013,147:432-442.
doi: 10.1111/j.1399-3054.2012.01688.x pmid: 22938023 |
[18] |
Kim S H, Jeong J C, Park S, Bae J Y, Ahn M J, Lee H S, Kwak S S . Down-regulation of sweetpotato lycopene β-cyclase gene enhances tolerance to abiotic stress in transgenic calli. Mol Biol Rep, 2014,41:8137-8148.
doi: 10.1007/s11033-014-3714-4 |
[19] |
Liu D G, He S Z, Zhai H, Wang L J, Zhao Y, Wang B, Li R J, Liu Q C . Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tiss Org Cult, 2014,117:1-16.
doi: 10.1007/s11240-013-0415-y |
[20] |
Liu D G, Wang L J, Liu C L, Song X J, He S Z, Zhai H, Liu Q C . An Ipomoea batatas iron-sulfur cluster scafold protein gene, IbNFU1, is involved in salt tolerance. PLoS One, 2014,9:e93935.
doi: 10.1371/journal.pone.0093935 pmid: 24695556 |
[21] |
Liu D G, Wang L J, Zhai H, Song X J, He S Z, Liu Q C . A novel ɑ/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One, 2014,9:e115128.
doi: 10.1371/journal.pone.0115128 pmid: 25501819 |
[22] |
Liu D G, He S Z, Song X J, Zhai H, Liu N, Zhang D D, Ren Z T, Liu Q C . IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Organ Cult, 2015,120:701-715.
doi: 10.1007/s11240-014-0638-6 |
[23] |
Wang B, Zhai H, He S Z, Zhang H, Ren Z T, Zhang D D, Liu Q C . A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic, 2016,201:153-166.
doi: 10.1016/j.scienta.2016.01.027 |
[24] |
Wang F B, Tong W J, Zhu H, Kong W L, Peng R H, Liu Q C, Yao Q H . A novel Cys2/His2 zinc fnger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta, 2016,243:783-797.
doi: 10.1007/s00425-015-2443-9 pmid: 26691387 |
[25] |
Wang F B, Zhai H, An Y Y, Si Z Z, He S Z, Liu Q C . Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato. J Integr Agric, 2016,15:271-281.
doi: 10.1016/S2095-3119(14)60973-4 |
[26] |
Zhai H, Wang F B, Si Z Z, Huo J X, Xing L, An Y Y, He S Z, Liu Q C . A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J, 2016,14:592-602.
doi: 10.1111/pbi.2016.14.issue-2 |
[27] |
Li R J, Kang C, Song X J, Yu L, Liu D G, He S Z, Zhai H, Liu Q C . A ζ-carotene desaturase gene, IbZDS, increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato. Plant Sci, 2017,262:39-51.
doi: 10.1016/j.plantsci.2017.05.014 pmid: 28716419 |
[28] |
Kang C, Zhai H, Xue L Y, Zhao N, He S Z, Liu Q C . A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci, 2018,272:243-254.
doi: 10.1016/j.plantsci.2018.05.005 pmid: 29807598 |
[29] |
Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z . A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019,223:1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337 |
[30] | 杨元军, 王玉萍, 翟红, 刘庆昌 . 甘薯块根总RNA的高效快速提取方法. 分子植物育种, 2008,6:193-196. |
Yang Y J, Wang Y P, Zhai H, Liu Q C . A simple and rapid procedure for RNA isolation from storage roots of sweetpotato ( Ipomoea batatas). Mol Plant Breed, 2008,6:193-196 (in Chinese with English abstract). | |
[31] |
Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C . Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweetpotato. J Integr Agric, 2013,12:27-35.
doi: 10.1016/S2095-3119(13)60202-6 |
[32] |
Jiang T, Zhai H, Wang F B, Zhou H N, Si Z Z, He S Z, Liu Q C . Cloning and characterization of a salt tolerance-associated gene encoding trehalose-6-phosphate synthase in sweetpotato. J Integr Agric, 2014,13:1651-1661.
doi: 10.1016/S2095-3119(13)60534-1 |
[33] | 喻娜, 郭新勇, 焦天奇, 祝建波 . 转小拟南芥ApHRD基因烟草获得及其抗旱性鉴定. 西北植物学报, 2010,30:2385-2393. |
Yu N, Guo X Y, Jiao T Q, Zhu J B . Transformation of ApHRD gene and drought-tolerance identification of transgenic plants in tobacco. Acta Bot Boreali-Occident Sin, 2010,30:2385-2393 (in Chinese with English abstract). | |
[34] | Huo J X, Du B, Sun S F, He S Z, Zhao N, Liu Q C, Zhai H . A novel aldo-keto reductase gene, IbAKR, from sweet potato confers higher tolerance to cadmium stress in tobacco. Front Agric Sci Eng, 2018,5:206-213. |
[35] |
Gill S S, Tuteja N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010,48:909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416 |
[36] |
Smirnoff N, Cumbes Q J . Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989,28:1057-1060.
doi: 10.1016/0031-9422(89)80182-7 |
[37] |
Bao A K, Wang S M, Wu G Q, Xi J J, Zhang J L, Wang C M . Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci, 2009,176:232-240.
doi: 10.1016/j.plantsci.2008.10.009 |
[38] |
Kumar V, Shriram V, Kishor P B K, Jawali N, Shitole M G . Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep, 2010,4:37-48.
doi: 10.1007/s11816-009-0118-3 |
[1] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[2] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[3] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[4] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[5] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[6] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[7] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[8] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[9] | 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727. |
[10] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[11] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[12] | 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565. |
[13] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[14] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[15] | 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358. |
|