欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1850-1861.doi: 10.3724/SP.J.1006.2020.04004

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析

左同鸿1(), 张贺翠1, 刘倩莹1, 廉小平2, 谢琴琴1, 胡燈科1, 张以忠1, 王玉奎1, 白晓璟1, 朱利泉1,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400716
    2西南大学园艺园林学院, 重庆 400716
  • 收稿日期:2020-01-08 接受日期:2020-07-02 出版日期:2020-12-12 网络出版日期:2020-09-24
  • 通讯作者: 朱利泉
  • 基金资助:
    国家自然科学基金项目(31572127);重庆市研究生科研创新项目(CYS18085);中央高校基本科研业务费(XDJK2017C032)

Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea

Tong-Hong ZUO1(), He-Cui ZHANG1, Qian-Ying LIU1, Xiao-Ping LIAN2, Qin-Qin XIE1, Deng-Ke HU1, Yi-Zhong ZHANG1, Yu-Kui WANG1, Xiao-Jing BAI1, Li-Quan ZHU1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
  • Received:2020-01-08 Accepted:2020-07-02 Published:2020-12-12 Published online:2020-09-24
  • Contact: Li-Quan ZHU
  • Supported by:
    National Natural Science Foundation of China(31572127);Chongqing Graduate Research and Innovation Project(CYS18085);Basic Scientific Research Business Expenses Project of the Central University(XDJK2017C032)

摘要:

谷胱甘肽-S-转移酶(glutathione S-transferases, GSTs)对植物抵御逆境胁迫、解除细胞毒素和植物生长发育起着重要作用。本研究通过甘蓝自花授粉0~60 min的柱头转录组数据分析, 筛选到1个受自花授粉诱导上调表达的谷胱甘肽-S-转移酶基因BoGSTL21BoGSTL21基因开放阅读框长度为900 bp, 编码299个氨基酸, 理论等电点为8.49, 不包含信号肽和跨膜区, 含有GST-N和GST-C结构域。BoGSTL21基因启动子中含有光响应、生长素应答、脱落酸反应、低温和干旱响应等多种顺式作用元件。BoGSTL21基因在甘蓝不同组织中均有表达, 柱头中的表达量随发育时间而变化, 在成熟的柱头中高表达。荧光定量PCR结果证实, BoGSTL21基因在0~60 min的表达量变化趋势与转录组分析结果一致。通过酵母双杂交发现, BoGSTL21蛋白与花粉发育相关蛋白BoFAB1C、生长素相关的蛋白BoPATL2、醛缩酶型TIM桶家族蛋白BoF9N12_9存在相互作用。BoGSTL21基因在大肠杆菌中被成功诱导表达, 纯化蛋白大小为34 kD, 与预测结果一致。表明BoGSTL21可能是参与SI反应过程的新蛋白, 这为甘蓝自交不亲和的进一步研究和利用提供了新内容。

关键词: 甘蓝, 基因克隆, 自交不亲和, 表达分析, 酵母双杂交

Abstract:

Glutathione-S-transferase (GSTs) plays an important role in plant resistance to stress, cytotoxic release and plant growth and development. In this study, we identified an up-regulated gene named BoGSTL21 based on the stigma transcriptome data in 0-60 min self-pollination. BoGSTL21 had an open reading frame (ORF) with the length of 900 bp, encoded a protein of 299 amino acid residues, which contained GST-N and GST-C domains without signal peptide and transmembrane domain, the theory isoelectric point of BoGSTL21 was 8.49. The promoter of BoGSTL21 gene contained many cis-acting elements such as light response, auxin response, abscisic acid response, low temperature and drought response. BoGSTL21 expresses in different tissues of Brassica oleracea. The expression level in stigma varies with developmental time, and was mainly overexpressed in mature stigma. The results of qRT-PCR revealed that BoGSTL21 mRNA expression level after self-and cross-pollinations for 0 min to 60 min was consistent with that of RNA-seq data. It was found through yeast two-hybrid that BoGSTL21 protein interacted with pollen development-related protein BoFAB1C, auxin-related protein BoPATL2, and aldolase-type TIM barrel family protein BoF9N12_9. BoGSTL21 gene was successfully induced and expressed in E. coli BL21 (DE3) with a purified protein size of 34 kD, which was consistent with the predicted results. According to the above results, BoGSTL21 may be a novel protein involved in the SI response process, which provides a new content for further research and utilization of self-incompatibility in Brasscia oleracea.

Key words: Brassica oleracea, gene cloning, self-incompatibility, expression analysis, yeast two-hybrid

表1

基因克隆及其荧光定量PCR分析所用引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Functions
BoGSTL21-PGEX-4T-1 F: GATCTGGTTCCGCGTGGATCCATGAGTGCCGGAGTGAGAGTTAG 基因的原核表达
R: CTCGAGTCGACCCGGGAATTCGGGACGTGCTTCTGCTTGG Prokaryotic expression
qRT-PCR F: TTCCTTTGCCGATTTAGTTTGG 荧光定量PCR引物
R: AGTGTTCATCTCCTTAAGCCAA qRT-PCR
dActin F: GGCTGATGGTGAAGATATTCA 内参引物
R: CAAGCACAATACCAGTAGTAC Internal reference primers
BoGSTL21-BK F: TCAGAGGAGGACCTGCATATGAGTGCCGGAGTGAGAGTTA 酵母双杂交引物
Yeast two-hybrid primers
R: TCGACGGATCCCCGGGAATTCGGGACGTGCTTCTGCTTG
BoFAB1C-AD F: GTACCAGATTACGCTCATATGGGGATGGTGAAGTTCTCTGTG
R: ATGCCCACCCGGGTGGAATTCGTTCCATGGCTCAGGAACC
BoPATL2-AD F: GTACCAGATTACGCTCATATGGCTCAAGAAGAGATACAGAAG
R: ATGCCCACCCGGGTGGAATTCTTATGCTTGCGTTTTGAACC
BoF9N12_9-AD F: GTACCAGATTACGCTCATATGGTGGTGTCGCCAAAGATAG
R: ATGCCCACCCGGGTGGAATTCTCAGGTGATGGGTTGGGC
1391 F: GAACTGATCGTTAAAACTGC 通用引物
R: TGGTCTTCTGAGACTGTATC Universal primer
BoGSTL21-GUS F: CAAGCTTGGCTGCAGGTCGACATGTTATACGTTGCGAACGC 基因的启动子活性分析
R: GGTGGACTCCTCTTAGAATTCACTCAATCGTTCTTCTTCCGT Promoter activity analysis

图1

用柱头转录组数据分析BoGSTL21自花授粉和异花授粉后的表达模式 SP: 自花授粉; CP: 异花授粉。"

图2

甘蓝BoGSTL21的cDNA和gDNA序列扩增产物电泳图"

图3

甘蓝BoGSTL21 cDNA结构图及其推导的氨基酸序列 虚线框为N-糖基化位点, 实线框为GST-N结构域, 下画虚线为GST-C结构域。"

图4

BoGSTL21与其他物种GSTL2氨基酸序列的系统进化树"

图5

甘蓝BoGSTL21与其他物种的同源蛋白氨基酸序列比对 黑色: 氨基酸一致性为100%; 深灰色: 氨基酸一致性为75%; 白色: 氨基酸一致性为50%。三角形标记BoGSTL21和BoGSTL2的不同之处; 下画直线为GST-N端结构域, 下画虚线为GST-C端结构域, 同时也代表该蛋白在这一区段保守性高。"

表2

BoGSTL21基因上游调控区顺式作用元件"

相关功能预测
Associated putative function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸(ABA)应答 Abscisic acid response ABRE
光响应 Light response G-Box, GT1-motif, TCT-motif
低氧诱导 Anaerobic induction response ARE
促进和增强基因转录 Promote and enhance gene transcription CAAT-box
赤霉素应答 Gibberellin-response GARE-motif, P-box
MYBHv1结合位点 MYBHv1 binding site CCAAT-box
涉及光响应的MYBHv1结合位点 MYB binding site involved in light response MRE
转录启动约-30的核心启动子 Core promoter element around -30 of transcription start TATA-box
低温响应 Low-temperature response LTR
干旱诱导 Drought induced response MBS
水杨酸(SA)反应 Salicylic acid response TCA-element
MeJA茉莉酸响应 MeJA-response CGTCA-motif, TGACG-motif
生长素(IAA)应答 Auxin-response TGA-element

图6

BoGSTL21基因在不同组织中的表达分析"

图7

GUS染色分析 a~c: 种子不同发育时期; d, e: 幼苗不同发育时期; f: 叶的不同发育时期; g~i: 花的不同发育时期; j, k: 果荚的不同发育时期。"

图8

BoGSTL21基因在不同授粉处理后柱头组织中的表达分析 SP: 自花授粉; CP: 异花授粉。"

表3

候选蛋白的功能注释分析"

候选蛋白Candidate protein 蛋白名称
Protein name
功能注释
Functional annotations
BoFAB1C 1-磷脂酰肌醇-3-磷酸5-激酶
1-phosphatidylinositol-3-
phosphate 5-kinase
具有1-磷脂酰肌醇-3-磷酸5-激酶活性, ATP结合,参与磷脂酰肌醇磷酸化, 花粉发育, 气孔关闭的生物过程。
It has 1-phosphatidylinositol-3-phosphate 5-kinase activity, ATP binding, participates in the biological processes of phosphatidylinositol phosphorylation, pollen development, and stomatal closure.
BoPATL2 patellin-2 PATL属于具有高尔基动力学(GOLD)结构域和Sec14p-like结构域串联的蛋白质家族。PATL受生长素调节。
PATL belongs to a family of proteins with a Golgi dynamics (GOLD) domain and a Sec14p-like domain tandem. PATL is regulated by auxin.
BoF9N12_9 磷酸核糖3-差向异构酶
Ribulose-phosphate 3-epimerase
属于醛缩酶型TIM桶家族蛋白, 参与碳水化合物代谢过程, 磷酸戊糖途径, 氨基酸的生物合成。
Belongs to the aldolase type TIM barrel family protein, involved in carbohydrate metabolism, pentose phosphate pathway, amino acid biosynthesis.

表4

质粒共转化酵母的相互作用分析"

编号
No.
酵母菌种(质粒)
Yeast strain (plasmid)
培养基
Yeast medium
菌斑
Colony
颜色
Color
1 Y2HGold (pGADT7-T×pGBKT7-53) SD/-Leu/-Trp 是Yes 白色White
2 Y2HGold (pGADT7-T×pGBKT7-Lam) SD/-Leu/-Trp 是Yes 红色Red
3 Y2HGold (pGADT7-BoFAB1C×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
4 Y2HGold (pGADT7-BoPATL2×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
5 Y2HGold (pGADT7-BoF9N12×pGBKT7-BoGSTL21) SD/-Leu/-Trp 是Yes 白色White
6 Y2HGold (pGADT7-T×pGBKT7-53) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
7 Y2HGold (pGADT7-T×pGBKT7-Lam) SD/-Ade/-His/-Leu/-Trp 是Yes 无色No
8 Y2HGold (pGADT7-BoFAB1C×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
9 Y2HGold (pGADT7-BoPATL2×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White
10 Y2HGold (pGADT7-BoF9N12×pGBKT7-BoGSTL21) SD/-Ade/-His/-Leu/-Trp 是Yes 白色White

图9

酵母双杂交验证BoFAB1C/BoGSTL21、BoPATL2/ BoGSTL21、BoF9N12_9/BoGSTL21之间的相互作用 第1~3排表示pGADT7-BoFAB1C/BoPATL2/BoF9N12_9× pGBDT7- BoGSTL21; 第4排表示阳性对照(pGADT7-T× pGBDT7-p53); 第5排表示阴性对照(pGADT7-T×pGBDT7-Lam)。"

图10

BoGSTL21蛋白的原核表达 M: 蛋白分子量标准; 1: BoGSTL21-pGEX-4T-1未诱导蛋白; 2: BoGSTL21-pGEX-4T-1诱导蛋白; 3: pGEX-4T-1蛋白; 4: BoGSTL21-pGEX-4T-1纯化蛋白。"

[1] Hamamura Y, Nagahara S, Higashiyama T . Double fertilization on the move. Curr Opin Plant Biol, 2012,15:70-77.
doi: 10.1016/j.pbi.2011.11.001 pmid: 22153653
[2] Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R . Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998,95:382-387.
doi: 10.1073/pnas.95.1.382 pmid: 9419384
[3] Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S-locus receptor kinase. Plant Physiol, 2003,133:919-929.
doi: 10.1104/pp.103.023846 pmid: 14555783
[4] Stone S L, Anderson E M, Mullen R T, Goring D R . ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003,15:885-898.
doi: 10.1105/tpc.009845 pmid: 12671085
[5] Nasrallah M E, Liu P, Nasrallah J B . Generation of self- incompatible Arabidopsis thaliana by transfer of two S-locus genes from A. lyrata. Science, 2002,297:247-249.
doi: 10.1126/science.1072205 pmid: 12114625
[6] Nasrallah M, Liu P, Sherman-Broyles S, Boggs N, Nasrallah J . Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci USA, 2004,101:16070-16074.
doi: 10.1073/pnas.0406970101 pmid: 15505209
[7] Nasrallah J B, Nasrallah M E . Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014,26:3838-3841.
doi: 10.1105/tpc.114.129387
[8] Shimabukuro R H, Swanson H R, Walsh W C . Glutathione conjugation:atrazine detoxification mechanism in corn. Plant Physiol, 1970,46:103-107.
doi: 10.1104/pp.46.1.103 pmid: 16657398
[9] Dixon D P, Lapthorn A, Edwards R . Plant glutathione transferases. Methods Enzymol, 2005,401:169-186.
doi: 10.1016/S0076-6879(05)01011-6 pmid: 16399386
[10] Moons A . Osgstu3 and osgtu4,encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003,553:427-432.
doi: 10.1016/s0014-5793(03)01077-9 pmid: 14572664
[11] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C . Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004,271:511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639
[12] Dixon D P, Davis B G, Edwards R . Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem, 2002,277:30859-30869.
doi: 10.1074/jbc.M202919200 pmid: 12077129
[13] Moons A . Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm, 2005,72:155-202.
doi: 10.1016/S0083-6729(05)72005-7 pmid: 16492471
[14] Marrs K . The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996,47:127-158.
doi: 10.1146/annurev.arplant.47.1.127 pmid: 15012285
[15] Edwards R, Dixon D P, Walbot V . Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000,5:193-198.
doi: 10.1016/s1360-1385(00)01601-0 pmid: 10785664
[16] Dixon D P, Cole D J, Edwards R . Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol, 1999,40:997-1008.
doi: 10.1023/a:1006257305725 pmid: 10527424
[17] Sommer A, Boger P . Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic Biochem Physiol, 1999,63:127-138.
doi: 10.1006/pest.1999.2396
[18] 胡廷章, 周大祥, 罗凯 . 植物谷胱甘肽转移酶的结构与功能及其基因表达. 植物生理学通讯, 2007,43:195-200.
Hu T Z, Zhou D X, Luo K . Structure and biological function of glutathione transferases and their genes in plants. J Plant Physiol, 2007,43:195-200 (in Chinese with English abstract).
[19] Sari-Gorla M, Ferrario S, Rossini L, Frova C, Villa M . Developmental expression of glutathione S-transferase in maize and its possible connection with herbicide tolerance. Euphytica, 1993,67:221-230.
doi: 10.1007/BF00040624
[20] Gietz R D, Schiestl R H . Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protocols, 2007,2:1-4.
doi: 10.1038/nprot.2007.17 pmid: 17401330
[21] Zeng J, Gao Q G, Shi S M, Lian X P, Converse R, Zhang H C, Yang X H, Ren X S, Chen S, Zhu L Q . Dissecting pistil responses to incompatible and compatible pollen in self-incompatibility Brassica oleracea using comparative proteomics. Protein J, 2017,36:123-137.
doi: 10.1007/s10930-017-9697-y pmid: 28299594
[22] Grotewold E . Subcellular trafficking of phytochemicals. Recent Res Dev Plant Physiol, 2001,2:31-48.
[23] Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V . Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998,10:1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133
[24] Mueller L A, Goodman C D, Silady R A, Walbot V . AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000,123:1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372
[25] Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y H, Dixon R A . MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell, 2011,23:1536-1555.
doi: 10.1105/tpc.110.080804
[26] Kitamura S, Shikazono N, Tanaka A . TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004,37:104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436
[27] Hahlbrock K, Scheel D . Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1989,40:347-369.
doi: 10.1146/annurev.pp.40.060189.002023
[28] Mo Y Y, Nagel C, Taylor L P . Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA, 1992,89:7213-7217.
doi: 10.1073/pnas.89.15.7213 pmid: 11607312
[29] Taylor L P, Grotewold E . Flavonoids as developmental regulators. Curr Opin Plant Biol, 2005,8:317-323.
doi: 10.1016/j.pbi.2005.03.005 pmid: 15860429
[30] Thieme C J, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze W X, Paz-Ares J, Scheible W R, Kragler F . Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants, 2015,1:15025.
doi: 10.1038/nplants.2015.25 pmid: 27247031
[31] Hirano T, Matsuzawa T, Takegawa K, Sato M H . Loss-of- function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol, 2011,155:797-807.
doi: 10.1104/pp.110.167981
[32] Whitley P, Hinz S, Doughty H . Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol, 2009,151:1812-1822.
doi: 10.1104/pp.109.146159 pmid: 19846542
[33] Tejos R, Rodriguez-Furlan C, Adamowski M, Sauer M, Norambuena L, Friml J . PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci, 2018, 131: jcs204198.
doi: 10.1242/jcs.204198 pmid: 28687624
[34] Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215.
doi: 10.1111/ppl.2008.134.issue-1
[35] 王玉奎, 张贺翠, 白晓璟, 廉小平, 施松梅, 刘倩莹, 左同鸿, 朱利泉 . 甘蓝BoPINs家族基因的特征和表达分析. 作物学报, 2019,45:1270-1278.
doi: 10.3724/SP.J.1006.2019.84129
Wang Y K, Zhang H C, Bai X J, Lian X P, Shi S M, Liu Q Y, Zuo T H, Zhu L Q . Characteristics and expression analysis of BoPINs family genes in Brassica oleracea. Acta Agron Sin, 2019,45:1270-1278 (in Chinese with English abstract).
[36] Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant, 2001,112:113-118.
doi: 10.1034/j.1399-3054.2001.1120115.x pmid: 11319022
[37] Aloni R, Aloni E, Langhans M, Ullrich C I . Role of auxin in regulating Arabidopsis flower development. Planta, 2006,223:315-328.
doi: 10.1007/s00425-005-0088-9
[38] Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109 pmid: 23129621
[39] Zettl R, Schell J, Palme K . Photo affinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7- 3H] indole- 3-acetic acid: Identification of a glutathione S-transferase. Proc Natl Acad Sci USA, 1994,91:689-693.
doi: 10.1073/pnas.91.2.689 pmid: 8290582
[40] 高世超, 林义章, 钟凤林, 赵瑞丽, 林琳琳, 占丽英 . 青花菜谷胱甘肽-S-转移酶基因克隆及其表达分析. 西北植物学报, 2014,34:651-657.
Gao S C, Lin Y Z, Zhong F L, Zhao R L, Lin L L, Zhan L Y . Cloning of GST and its expression in Broccoli (Brassica oleracea var. italic). Acta Bot Boreali-Occident Sin, 2014,34:651-657 (in Chinese with English abstract).
[41] Jiang J J, Jiang J X, Qiu L, Miao Y, Yao L N, Cao J S . Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome, 2012,56:39-48.
doi: 10.1139/gen-2012-0088 pmid: 23379337
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[14] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[15] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!