作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1850-1861.doi: 10.3724/SP.J.1006.2020.04004
左同鸿1(), 张贺翠1, 刘倩莹1, 廉小平2, 谢琴琴1, 胡燈科1, 张以忠1, 王玉奎1, 白晓璟1, 朱利泉1,*()
Tong-Hong ZUO1(), He-Cui ZHANG1, Qian-Ying LIU1, Xiao-Ping LIAN2, Qin-Qin XIE1, Deng-Ke HU1, Yi-Zhong ZHANG1, Yu-Kui WANG1, Xiao-Jing BAI1, Li-Quan ZHU1,*()
摘要:
谷胱甘肽-S-转移酶(glutathione S-transferases, GSTs)对植物抵御逆境胁迫、解除细胞毒素和植物生长发育起着重要作用。本研究通过甘蓝自花授粉0~60 min的柱头转录组数据分析, 筛选到1个受自花授粉诱导上调表达的谷胱甘肽-S-转移酶基因BoGSTL21。BoGSTL21基因开放阅读框长度为900 bp, 编码299个氨基酸, 理论等电点为8.49, 不包含信号肽和跨膜区, 含有GST-N和GST-C结构域。BoGSTL21基因启动子中含有光响应、生长素应答、脱落酸反应、低温和干旱响应等多种顺式作用元件。BoGSTL21基因在甘蓝不同组织中均有表达, 柱头中的表达量随发育时间而变化, 在成熟的柱头中高表达。荧光定量PCR结果证实, BoGSTL21基因在0~60 min的表达量变化趋势与转录组分析结果一致。通过酵母双杂交发现, BoGSTL21蛋白与花粉发育相关蛋白BoFAB1C、生长素相关的蛋白BoPATL2、醛缩酶型TIM桶家族蛋白BoF9N12_9存在相互作用。BoGSTL21基因在大肠杆菌中被成功诱导表达, 纯化蛋白大小为34 kD, 与预测结果一致。表明BoGSTL21可能是参与SI反应过程的新蛋白, 这为甘蓝自交不亲和的进一步研究和利用提供了新内容。
[1] |
Hamamura Y, Nagahara S, Higashiyama T . Double fertilization on the move. Curr Opin Plant Biol, 2012,15:70-77.
doi: 10.1016/j.pbi.2011.11.001 pmid: 22153653 |
[2] |
Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R . Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998,95:382-387.
doi: 10.1073/pnas.95.1.382 pmid: 9419384 |
[3] |
Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S-locus receptor kinase. Plant Physiol, 2003,133:919-929.
doi: 10.1104/pp.103.023846 pmid: 14555783 |
[4] |
Stone S L, Anderson E M, Mullen R T, Goring D R . ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003,15:885-898.
doi: 10.1105/tpc.009845 pmid: 12671085 |
[5] |
Nasrallah M E, Liu P, Nasrallah J B . Generation of self- incompatible Arabidopsis thaliana by transfer of two S-locus genes from A. lyrata. Science, 2002,297:247-249.
doi: 10.1126/science.1072205 pmid: 12114625 |
[6] |
Nasrallah M, Liu P, Sherman-Broyles S, Boggs N, Nasrallah J . Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci USA, 2004,101:16070-16074.
doi: 10.1073/pnas.0406970101 pmid: 15505209 |
[7] |
Nasrallah J B, Nasrallah M E . Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014,26:3838-3841.
doi: 10.1105/tpc.114.129387 |
[8] |
Shimabukuro R H, Swanson H R, Walsh W C . Glutathione conjugation:atrazine detoxification mechanism in corn. Plant Physiol, 1970,46:103-107.
doi: 10.1104/pp.46.1.103 pmid: 16657398 |
[9] |
Dixon D P, Lapthorn A, Edwards R . Plant glutathione transferases. Methods Enzymol, 2005,401:169-186.
doi: 10.1016/S0076-6879(05)01011-6 pmid: 16399386 |
[10] |
Moons A . Osgstu3 and osgtu4,encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003,553:427-432.
doi: 10.1016/s0014-5793(03)01077-9 pmid: 14572664 |
[11] |
Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C . Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet Genomics, 2004,271:511-521.
doi: 10.1007/s00438-004-1006-8 pmid: 15069639 |
[12] |
Dixon D P, Davis B G, Edwards R . Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem, 2002,277:30859-30869.
doi: 10.1074/jbc.M202919200 pmid: 12077129 |
[13] |
Moons A . Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm, 2005,72:155-202.
doi: 10.1016/S0083-6729(05)72005-7 pmid: 16492471 |
[14] |
Marrs K . The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996,47:127-158.
doi: 10.1146/annurev.arplant.47.1.127 pmid: 15012285 |
[15] |
Edwards R, Dixon D P, Walbot V . Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000,5:193-198.
doi: 10.1016/s1360-1385(00)01601-0 pmid: 10785664 |
[16] |
Dixon D P, Cole D J, Edwards R . Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol, 1999,40:997-1008.
doi: 10.1023/a:1006257305725 pmid: 10527424 |
[17] |
Sommer A, Boger P . Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic Biochem Physiol, 1999,63:127-138.
doi: 10.1006/pest.1999.2396 |
[18] | 胡廷章, 周大祥, 罗凯 . 植物谷胱甘肽转移酶的结构与功能及其基因表达. 植物生理学通讯, 2007,43:195-200. |
Hu T Z, Zhou D X, Luo K . Structure and biological function of glutathione transferases and their genes in plants. J Plant Physiol, 2007,43:195-200 (in Chinese with English abstract). | |
[19] |
Sari-Gorla M, Ferrario S, Rossini L, Frova C, Villa M . Developmental expression of glutathione S-transferase in maize and its possible connection with herbicide tolerance. Euphytica, 1993,67:221-230.
doi: 10.1007/BF00040624 |
[20] |
Gietz R D, Schiestl R H . Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protocols, 2007,2:1-4.
doi: 10.1038/nprot.2007.17 pmid: 17401330 |
[21] |
Zeng J, Gao Q G, Shi S M, Lian X P, Converse R, Zhang H C, Yang X H, Ren X S, Chen S, Zhu L Q . Dissecting pistil responses to incompatible and compatible pollen in self-incompatibility Brassica oleracea using comparative proteomics. Protein J, 2017,36:123-137.
doi: 10.1007/s10930-017-9697-y pmid: 28299594 |
[22] | Grotewold E . Subcellular trafficking of phytochemicals. Recent Res Dev Plant Physiol, 2001,2:31-48. |
[23] |
Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V . Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998,10:1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133 |
[24] |
Mueller L A, Goodman C D, Silady R A, Walbot V . AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000,123:1561-1570.
doi: 10.1104/pp.123.4.1561 pmid: 10938372 |
[25] |
Zhao J, Huhman D, Shadle G, He X Z, Sumner L W, Tang Y H, Dixon R A . MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell, 2011,23:1536-1555.
doi: 10.1105/tpc.110.080804 |
[26] |
Kitamura S, Shikazono N, Tanaka A . TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004,37:104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436 |
[27] |
Hahlbrock K, Scheel D . Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1989,40:347-369.
doi: 10.1146/annurev.pp.40.060189.002023 |
[28] |
Mo Y Y, Nagel C, Taylor L P . Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA, 1992,89:7213-7217.
doi: 10.1073/pnas.89.15.7213 pmid: 11607312 |
[29] |
Taylor L P, Grotewold E . Flavonoids as developmental regulators. Curr Opin Plant Biol, 2005,8:317-323.
doi: 10.1016/j.pbi.2005.03.005 pmid: 15860429 |
[30] |
Thieme C J, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze W X, Paz-Ares J, Scheible W R, Kragler F . Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants, 2015,1:15025.
doi: 10.1038/nplants.2015.25 pmid: 27247031 |
[31] |
Hirano T, Matsuzawa T, Takegawa K, Sato M H . Loss-of- function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol, 2011,155:797-807.
doi: 10.1104/pp.110.167981 |
[32] |
Whitley P, Hinz S, Doughty H . Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol, 2009,151:1812-1822.
doi: 10.1104/pp.109.146159 pmid: 19846542 |
[33] |
Tejos R, Rodriguez-Furlan C, Adamowski M, Sauer M, Norambuena L, Friml J . PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci, 2018, 131: jcs204198.
doi: 10.1242/jcs.204198 pmid: 28687624 |
[34] |
Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215.
doi: 10.1111/ppl.2008.134.issue-1 |
[35] |
王玉奎, 张贺翠, 白晓璟, 廉小平, 施松梅, 刘倩莹, 左同鸿, 朱利泉 . 甘蓝BoPINs家族基因的特征和表达分析. 作物学报, 2019,45:1270-1278.
doi: 10.3724/SP.J.1006.2019.84129 |
Wang Y K, Zhang H C, Bai X J, Lian X P, Shi S M, Liu Q Y, Zuo T H, Zhu L Q . Characteristics and expression analysis of BoPINs family genes in Brassica oleracea. Acta Agron Sin, 2019,45:1270-1278 (in Chinese with English abstract). | |
[36] |
Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Plant, 2001,112:113-118.
doi: 10.1034/j.1399-3054.2001.1120115.x pmid: 11319022 |
[37] |
Aloni R, Aloni E, Langhans M, Ullrich C I . Role of auxin in regulating Arabidopsis flower development. Planta, 2006,223:315-328.
doi: 10.1007/s00425-005-0088-9 |
[38] |
Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109 pmid: 23129621 |
[39] |
Zettl R, Schell J, Palme K . Photo affinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7- 3H] indole- 3-acetic acid: Identification of a glutathione S-transferase. Proc Natl Acad Sci USA, 1994,91:689-693.
doi: 10.1073/pnas.91.2.689 pmid: 8290582 |
[40] | 高世超, 林义章, 钟凤林, 赵瑞丽, 林琳琳, 占丽英 . 青花菜谷胱甘肽-S-转移酶基因克隆及其表达分析. 西北植物学报, 2014,34:651-657. |
Gao S C, Lin Y Z, Zhong F L, Zhao R L, Lin L L, Zhan L Y . Cloning of GST and its expression in Broccoli (Brassica oleracea var. italic). Acta Bot Boreali-Occident Sin, 2014,34:651-657 (in Chinese with English abstract). | |
[41] |
Jiang J J, Jiang J X, Qiu L, Miao Y, Yao L N, Cao J S . Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome, 2012,56:39-48.
doi: 10.1139/gen-2012-0088 pmid: 23379337 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[10] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[11] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[14] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[15] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
|