欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 1-18.doi: 10.3724/SP.J.1006.2021.02021

• 综述 •    下一篇

生物炭的结构及其理化特性研究回顾与展望

张伟明(), 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福*()   

  1. 沈阳农业大学农学院/辽宁省生物炭工程技术研究中心, 辽宁沈阳 110866
  • 收稿日期:2020-03-17 接受日期:2020-08-19 出版日期:2021-01-12 网络出版日期:2020-09-22
  • 通讯作者: 陈温福
  • 作者简介:E-mail: biochar_zwm@syau.edu.cn
  • 基金资助:
    国家重点研发计划项目“稻田生物炭基培肥产品的研制与施用技术”(2016YFD0300904-4);“生物炭基复合肥料研制与示范”(2017YFD0200802-02);辽宁省高校重大科技创新平台(生物炭工程技术研究中心)项目;院士专项基金和国家水稻产业技术体系项目(CARS01-46)

Review of biochar structure and physicochemical properties

ZHANG Wei-Ming(), XIU Li-Qun, WU Di, SUN Yuan-Yuan, GU Wen-Qi, ZHANG Hong-Gui, MENG Jun, CHEN Wen-Fu*()   

  1. College of Agriculture, Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, Liaoning, China
  • Received:2020-03-17 Accepted:2020-08-19 Published:2021-01-12 Published online:2020-09-22
  • Contact: CHEN Wen-Fu
  • Supported by:
    National Key Research and Development Program of China “the Development and Application of Biochar-based Fertilizer in Rice Soil Fertility”(2016YFD0300904-4);State Key Special Program of Biochar-Fertilizer Technology Research and Industrialization Demonstration(2017YFD0200802-02);Liaoning Province Major Science and Technology Platform for University (Biochar Engineering and Technical Research Center);Special Fund for Academicians, and the National Rice Industrial Technology System(CARS01-46)

摘要:

作为新兴技术, 生物炭技术及其应用在近年发展迅速, 但由于来源、材质、炭化工艺等存在较大差异, 导致生物炭特性及应用效果千差万别, 研究结果难以比对甚至相悖, 在一定程度上阻碍了生物炭研究与应用的发展。为此, 本文从制约生物炭功效发挥的关键因素, 即生物炭的结构及理化特性入手, 系统梳理了近年有关生物炭的定义、形成、结构、元素及其主要理化特性和调控技术等方面的研究进展, 总结分析了生物炭结构及其理化特性的共性、差异性特征及规律, 厘清了有关生物炭特性及功能的基本观点、现状和共识。认为, 生物炭的结构及其理化特性是影响生物炭作用、功能及效果的最主要因素, 决定了生物炭的应用领域、范围、量级、目标和方向, 采用改性或优化调控技术是发挥生物炭功效优势、潜力与价值的关键。并从资源与环境的“循环、可持续”发展角度, 结合生物炭研究与应用实际, 探讨了未来有关生物炭理化特性研究的基本原则和方向, 旨在为生物炭基础科学研究与应用技术发展提供基础和参考。

关键词: 生物炭, 结构, 理化特性, 研究进展

Abstract:

As a new emerging technology, biochar and its applications have been rapidly developed in recent years. However, due to large differences in carbonization materials and processes, it is difficult to compare or even contrast the results of biochar application studies, thus hindering the development of biochar applications to some extent. For this reason, our paper focuses on the key factors restricted the function of biochar, namely, the structure as well as physical and chemical properties of biochar, and then systematically presents the main research advances in recent years from the following perspectives of biochar such as definition, formation, structure, elemental composition, and other main physical-chemical properties, and property controlling-technologies. The paper analyses and summarizes the common and differential characteristics of biochar structure and physical and chemical properties and clarifies the relevant basic perspectives, statuses, trends, and consensus on the structure and properties of biochar. The structure and fundamental physical and chemical properties of biochar are believed to be the most important factors affecting the roles, function, and effects of biochar. They also determine the application field, scope, amount, objective, and direction of biochar. Therefore, the modification technology or optimal regulation technique is the key to develop the efficacy advantage, potential and values of biochar. By further combining the research and application of biochar, the basic principles and development directions of biochar physicochemical property research in the future focusing on the physical and chemical properties of biochar are evaluated from cycle and sustainable development of resources and material perspectives. This paper aims to provide the basis and reference for the development of basic scientific science and application technology studies on biochar.

Key words: biochar, structure, physicochemical properties, advances

图1

不同炭化温度下的生物炭结构表征示意图[4] A: 生物炭结构中芳香族碳增加, 主要以无定型碳为主。B: 生物炭结构中涡轮层状芳香碳增加。C: 生物炭结构趋于石墨化。"

表1

生物炭中有害元素含量上限阈值[111]"

有害元素
Toxic element
含量
Content (mg kg-1)
砷Arsenic 13-100
镉Cadmium 1.4-39.0
铜Copper 143-6000
铬Chromium 93-1200
镍Nickel 47-420
铅Lead 121-300
锌Zinc 416-7400
汞Mercury 1-17
钼Molybdenum 5-75
钴Cobalt 34-100

图2

生物炭对重金属(a)和有机污染物(b)吸附模型[87]"

图3

生物炭的疏水性(a)和持水性(b)[133] "

图4

生物炭基纳米复合材料的合成制备过程[175]"

[1] Bapat H, Manahan S E, Larsen D W. An activated carbon product prepared from milo (Sorghum vulgare) grain for use in hazardous waste gasification by ChemChar concurrent flow gasification. Chemosphere, 1999,39:23-32.
doi: 10.1016/S0045-6535(98)00585-2
[2] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems: a review. Mitig Adapt Strat Gl, 2006,11:403-427.
doi: 10.1007/s11027-005-9006-5
[3] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fert Soils, 2002,35:219-230.
doi: 10.1007/s00374-002-0466-4
[4] Lehmann J, Joseph S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd edn. London: Earthscan from Routledge, 2015. pp 1-1214.
[5] International Biochar Initiative (IBI). International Biochar Initiative—Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards) Version 2.0. International Biochar Initiative: Westerville, OH, USA, 2014.
[6] Zhang Z K, Zhu Z Y, Shen B X, Liu L N. Insights into biochar and hydrochar production and applications: a review. Energy, 2019,171:581-598.
doi: 10.1016/j.energy.2019.01.035
[7] Li S, Harris S, Anandhi A, Chen G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses. J Clean Prod, 2019,215:890-902.
doi: 10.1016/j.jclepro.2019.01.106
[8] Masebinu S O, Akinlabi E T, Muzenda E, Aboyade A O. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew Sust Energ Rev, 2019,103:291-307.
doi: 10.1016/j.rser.2018.12.048
[9] 陈温福, 张伟明, 孟军, 徐正进. 生物炭应用技术研究. 中国工程科学, 2011,13(2):83-89.
Chen W F, Zhang W M, Meng J, Xu Z J. Researches on biochar application technology. Eng Sci, 2011,13(2):83-89 (in Chinese with English abstract).
[10] Azargohar R, Jacobson K L, Powell E E, Dalai A K. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J Anal Appl Pyrol, 2013,104:330-340.
doi: 10.1016/j.jaap.2013.06.016
[11] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization. Bioresour Technol, 1992,42:219-231.
doi: 10.1016/0960-8524(92)90025-S
[12] Zhang L H, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manage, 2010,51:969-982.
doi: 10.1016/j.enconman.2009.11.038
[13] McGrath T E, Chan W G, Hajaligol M R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolys is of cellulose. J Anal Appl Pyrol, 2003,66:51-70.
[14] Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sust Energ Rev, 2017,77:59-69.
[15] Rangabhashiyam S, Balasubramanian P. The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application: a review. Ind Crop Prod, 2019,128:405-423.
[16] Li D C, Jiang H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: a review on characterizations and mechanism elucidation. Biores Technol, 2017,246:57-68.
[17] Vaibhav D, Thallada B. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy, 2017,129:695-716.
[18] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev, 2006,106:4044-4098.
doi: 10.1021/cr068360d pmid: 16967928
[19] Yu J, Paterson N, Blamey J, Millan M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 2017,191:140-149.
doi: 10.1016/j.fuel.2016.11.057
[20] Sonil N, Javeed M, Sivamohan N R, Janusz A K, Ajay K D. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Bior, 2014,4:157-191.
[21] Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev, 2012,41:1538-1558.
doi: 10.1039/c1cs15147a pmid: 21909591
[22] Toor S S, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy, 2011,36:2328-2342.
doi: 10.1016/j.energy.2011.03.013
[23] Shen D K, Gu S, Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J Anal Appl Pyrol, 2010,87:199-206.
doi: 10.1016/j.jaap.2009.12.001
[24] Liu W J, Jiang H, Yu H Q. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev, 2015,115:12251-12285.
pmid: 26495747
[25] Li S, Lyons-Hart J, Banyasz J, Shafer K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel, 2001,80:1809-1817.
doi: 10.1016/S0016-2361(01)00064-3
[26] Cao X F, Sun S N, Sun R C. Application of biochar-based catalysts in biomass upgrading: a review. Rsc Adv, 2017,7:48793-48805.
doi: 10.1039/C7RA09307A
[27] Kosa M, Ben H, Theliander H, Ragauskas A J. Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chem, 2011,13:3196.
doi: 10.1039/c1gc15818j
[28] Zhang J, Nolte M W, Shanks B H. Investigation of primary reactions and secondary effects from the pyrolysis of different celluloses. ACS sustain. Chem Eng, 2014,2:2820-2830.
[29] Morf P, Hasler P, Nussbaumer T. Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 2002,81:843-853.
doi: 10.1016/S0016-2361(01)00216-2
[30] Wei L, Xu S, Zhang L, Zhang H, Liu C, Zhu H, Liu S. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process Technol, 2006,87:863-871.
doi: 10.1016/j.fuproc.2006.06.002
[31] Tsai W T, Lee M K, Chang J H, Su T Y, Chang Y M. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis. Bioresour Technol, 2009,100:2650-2654.
doi: 10.1016/j.biortech.2008.11.023 pmid: 19136255
[32] Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, Yperman J. Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 2009,88:1344-1350.
doi: 10.1016/j.fuel.2009.02.020
[33] Shaheen S M, Niazi N K N, Hassan N E E, Bibi I, Wang H L, Tsang D C W, Ok Y S, Bolan N, Rinklebe J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev, 2019,64:216-247.
doi: 10.1080/09506608.2018.1473096
[34] Chen W F, Meng J, Han X R, Lan Y, Zhang W M. Past, present, and future of biochar. Biochar, 2019,1:75-87.
doi: 10.1007/s42773-019-00008-3
[35] Liu Y X, Lonappan L, Brar S K, Yang S M. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci Total Environ, 2018,645:60-70.
doi: 10.1016/j.scitotenv.2018.07.099 pmid: 30015119
[36] Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil, 2007,300:9-20.
doi: 10.1007/s11104-007-9391-5
[37] Leng L J, Huang H J. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol, 2018,270:627-642.
doi: 10.1016/j.biortech.2018.09.030 pmid: 30220436
[38] Qambrani N A, Rahman M M, Wonc S, Shima S, Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sust Energ Rev, 2017,79:255-273.
doi: 10.1016/j.rser.2017.05.057
[39] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展. 生态环境学报, 2011,20:779-785.
Yuan J H, Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions. Soil Environ Sci, 2011,20:779-785 (in Chinese with English abstract).
[40] Chen Y Q, Yang H P, Wang X H, Zhang S H, Chen H P. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Biores Technol, 2012,107:411-418.
doi: 10.1016/j.biortech.2011.10.074
[41] Shaaban M, Zwieten L V, Bashir S, Younas A, Núñez-Delgado A, Chhajro M A, Kubar K A, Ali U, Rana M S, Mehmood M A, Hu R G. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manage, 228:429-440.
pmid: 30243078
[42] Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007,86:1781-1788.
doi: 10.1016/j.fuel.2006.12.013
[43] Keiluweit M, Nico P S, Johnson M G, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol, 2010,44:1247-1253.
doi: 10.1021/es9031419 pmid: 20099810
[44] Joseph S D, Downie A, Crosky A, Lehmann J, Munroe P. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility: a review of the materials science. Rend Circ Mat Palermo Suppl, 2007,48:101-106.
[45] Cantrell K B, Hunt P G, Uchimiya M, Novak J M, Ro K S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol, 2012,107:419-428.
pmid: 22237173
[46] Li H, Dong X, da Silva E B, de Oliveira L M, Chen Y, Ma L Q. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 2017,178:466-478.
pmid: 28342995
[47] Liu Y X, Yao S, Wang Y Y, Lu H H, Brar S K, Yang S M. Bio- and hydrochars from rice straw and pig manure: inter-comparison. Bioresour Technol, 2017,235:332-337.
doi: 10.1016/j.biortech.2017.03.103 pmid: 28376384
[48] Halim S A, Swithenbank J. Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology. J Anal Appl Pyrol, 2016,122:64-75.
doi: 10.1016/j.jaap.2016.10.021
[49] Uzunova S, Angelova D, Anchev B, Uzunov I, Gigova A. Changes in structure of solid pyrolysis residue during slow pyrolysis of rice husk. Bulg Chem Commun, 2014,46:184-191.
[50] Chun Y, Sheng G G, Chiou C T, Xing B S. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol, 2004,38:4649-4655.
doi: 10.1021/es035034w pmid: 15461175
[51] 黄华, 王雅雄, 唐景春, 朱文英. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能. 环境科学, 2014,35:1884-1890.
Huang H, Wang Y X, Tang J C, Zhu W Y. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene. Environ Sci, 2014,35:1884-1890 (in Chinese with English abstract).
[52] Zhang J, Liu J, Liu R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour Technol, 2015,176:288-291.
doi: 10.1016/j.biortech.2014.11.011 pmid: 25435066
[53] Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R. Recent advances in utilization of biochar. Renew Sust Energ Rev, 2015,42:1055-1064.
doi: 10.1016/j.rser.2014.10.074
[54] 张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013,39:1445-1451.
doi: 10.3724/SP.J.1006.2013.01445
Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron Sin, 2013,39:1445-1451 (in Chinese with English abstract).
[55] UC Davis Biochar Database, 2015. http://biochar.ucdavis.edu/download/ (accessed 2016-12-25).
[56] Lehmann J. Bio-energy in the black. Front Ecol Environ, 2007,5:381-387.
doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
[57] Novak J M, Lima I, Xing B, Gaskin J W, Steiner C, Das K C, Ahmedna M, Rehrah D, Watts D W, Busscher W J, Schomberg H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci, 2009,3:195-206.
[58] Spokas K A, Novak J M, Stewart C E, Cantrell K B, Uchimiya M, DuSaire M G, Ro K S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 2011,85:869-882
doi: 10.1016/j.chemosphere.2011.06.108
[59] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage, 2011,27:110-115.
doi: 10.1111/j.1475-2743.2010.00317.x
[60] Xu X Y, Zhao Y H, Sima J, Zhao L, Mašek O, Cao X D. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour Technol, 2017,101:887-899.
[61] Al-Wabel M, Al-Omran A, El-Naggar A H, Nadeem M, Usman A R A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol, 2013,131:374-379.
doi: 10.1016/j.biortech.2012.12.165 pmid: 23376202
[62] Wang Y, Hu Y, Zhao X, Wang S, Xing G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energ Fuel, 2013,27:5890-5899.
doi: 10.1021/ef400972z
[63] Conti R, Rombolà A G, Modelli A, Torri C, Fabbri D. Evaluation of the thermal and environmental stability of switchgrass biochars by Py-GC-MS. J Anal Appl Pyrol, 2014,110:239-247.
doi: 10.1016/j.jaap.2014.09.010
[64] Angin D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol, 2013,128:593-597.
doi: 10.1016/j.biortech.2012.10.150 pmid: 23211485
[65] Tan Z X, Lin C S K, Ji X Y, Raineyd T J. Returning biochar to fields: a review. Appl Soil Ecol, 2017,116:1-11.
doi: 10.1016/j.apsoil.2017.03.017
[66] Lehmann J, Pereira D S, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological a throsol and a ferralsol of central amazonia: fertilizer, and charcoal amendments. Plant Soil, 2003,249:343-357.
doi: 10.1023/A:1022833116184
[67] 周劲松, 闫平, 张伟明, 郑福余, 程效义, 陈温福. 生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响. 作物学报, 2017,43:72-81.
doi: 10.3724/SP.J.1006.2017.00072
Zhou J S, Yan P, Zhang W M, Zheng F Y, Cheng X Y, Chen W F. Effect of biochar on root morphogenesis and anatomical structure of rice cultivated in cold region of northeast China. Acta Agron Sin, 2017,43:72-81 (in Chinese with English abstract).
[68] Yavari S, Malakahmad A, Sapari N B. Biochar efficiency in pesticides sorption as a function of production variables: a review. Environ Sci Pollut R, 2015,22:13824-13841.
doi: 10.1007/s11356-015-5114-2
[69] Oliveira F R, Patel A K, Jaisi D P, Adhikaric S, Lu H, Khanala S K. Environmental application of biochar: current status and perspectives. Bioresour Technol, 2017,246:110-122.
doi: 10.1016/j.biortech.2017.08.122 pmid: 28863990
[70] Chen Y Q, Zhang X, Chen W, Yang H P, Chen H P. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technol, 2017,246:101-109.
pmid: 28893501
[71] Zhao B, O‘Connor D, Zhang J, Peng T, Shen Z, Tsang D C W, Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod, 2018,174:977-987.
doi: 10.1016/j.jclepro.2017.11.013
[72] Kim K H, Kim J, Cho T, Choi J W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol, 2012,118:158-62.
doi: 10.1016/j.biortech.2012.04.094 pmid: 22705519
[73] Yao Y, Gao B, Chen H, Jiang L J, Inyang M, Zimmerman A R, Cao X D, Yang L Y, Xue Y W, Li H. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater, 2012,209:408-413.
doi: 10.1016/j.jhazmat.2012.01.046 pmid: 22321858
[74] Burhenne L, Damiani M, Aicher T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel, 2013,107:836-847.
doi: 10.1016/j.fuel.2013.01.033
[75] Fu P, Hu S, Xiang J, Sun L S, Li P S, Zhang J Y, Zheng C G. Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy Fuel, 2009,23:4605-4611.
doi: 10.1021/ef900268y
[76] Chen Y, Zhang X, Chen W, Yang H, Chen H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technol, 2017,246:101-109.
pmid: 28893501
[77] Zhang H, Voroney R, Price G. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol Biochem, 2015,83:19-28.
doi: 10.1016/j.soilbio.2015.01.006
[78] Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol, 2010,101:5222-5228.
pmid: 20206509
[79] 谢祖彬, 刘琦, 许燕萍, 朱春悟. 生物炭研究进展及其研究方向. 土壤, 2011,43:857-861.
Xie Z B, Liu Q, Xu Y P, Zhu C W. Advances and perspectives of biochar research. Soil, 2011,43:857-861 (in Chinese with English abstract).
[80] 陈静文, 张迪, 吴敏, 王朋. 两类生物炭的元素组分分析及其热稳定性. 环境化学, 2014,33:417-422.
Chen J W, Zhang D, Wu M, Wang P. Elemental composition and thermal stability of two different biochars. Environ Chem, 2014,33:417-422 (in Chinese with English abstract).
[81] Zornoza R, Moreno-Barriga F, Acosta J A, Muñoz M A, Faz A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere, 2016,144:122-130.
doi: 10.1016/j.chemosphere.2015.08.046
[82] Hossain M, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage, 2011,92:223-228.
doi: 10.1016/j.jenvman.2010.09.008
[83] Chen T, Zhang Y X, Wang H T, Lu W J, Zhou Z Y, Zhang Y C, Ren L L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol, 2014,164:47-54.
doi: 10.1016/j.biortech.2014.04.048 pmid: 24835918
[84] Subedi R, Taupe N, Pelissetti S, Petruzzelli L, Bertora C, Leahy J, Grignani C. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type. J Environ Manag, 2016,166:73-83.
doi: 10.1016/j.jenvman.2015.10.007
[85] Zhao L, Cao X D, Masek O, Zimmerman A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater, 2013,256/257:1-9.
doi: 10.1016/j.jhazmat.2013.04.015
[86] Ahmad M, Lee S S, Dou X, Mohan D, Sung J K, Yang J E, Ok Y S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol, 2012,118:536-544.
doi: 10.1016/j.biortech.2012.05.042 pmid: 22721877
[87] Tan X F, Liu Y G, Zeng G M, Wang X, Hu X J, Gu Y L, Yang Z Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015,125:70-85.
doi: 10.1016/j.chemosphere.2014.12.058 pmid: 25618190
[88] Zhang J, Wang Q. Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia-nitrogen capture. J Clean Prod, 2016,112:3927-3934.
doi: 10.1016/j.jclepro.2015.07.096
[89] 张旭东, 梁超, 诸葛玉平, 姜勇, 解宏图, 何红波, 王晶. 黑碳在土壤有机碳生物地球化学循环中的作用. 土壤通报, 2003,34:349-355.
Zhang X D, Liang C, Zhu-Ge Y P, Jiang Y, Jie H T, He H B, Wang J. Roles of black carbon in the biogeochemical cycles of soil organic carbon. Chin J Soil Sci, 2003,34:349-355 (in Chinese with English abstract).
[90] Ameloot N, Graber E R, Verheijen F G A, Neve S D. Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci, 2013,64:379-390.
doi: 10.1111/ejss.12064
[91] Huff M D, Kumar S, Lee J W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J Environ Manage, 2014,146:303-308.
doi: 10.1016/j.jenvman.2014.07.016 pmid: 25190598
[92] Gul S, Whalen J K, Thomas B W, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ, 2015,206:46-59.
doi: 10.1016/j.agee.2015.03.015
[93] Gul S, Whalen J K. Biochemical cycling of nitrogen and phosphorus in biochar-amended Soils. Soil Biol Biochem, 2016,103:1-15.
doi: 10.1016/j.soilbio.2016.08.001
[94] Spokas K A, Novak J M, Venterea R T. Biochar’s role as an alternative N fertilizer: ammonia capture. Plant Soil, 2012,350:35-42.
doi: 10.1007/s11104-011-0930-8
[95] Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 2013,193:122-130.
doi: 10.1016/j.geoderma.2012.10.002
[96] Zheng H, Wang Z Y, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B S. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol, 2013,130:463-471.
doi: 10.1016/j.biortech.2012.12.044 pmid: 23313694
[97] Ding Y, Liu Y G, Liu S B, Li Z W, Tan X F, Huang X X, Zeng G M, Zhou L, Zheng B H. Biochar to improve soil fertility. A review. Agron Sustain Dev, 2016,36:36.
doi: 10.1007/s13593-016-0372-z
[98] Silber A, Levkovitch I, Graber E R. PH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol, 2010,44:9318-9323.
doi: 10.1021/es101283d pmid: 21090742
[99] Cao X D, Ma L Q, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol, 2009,43:3285-3291.
doi: 10.1021/es803092k pmid: 19534148
[100] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol, 2011,102:3488-3497.
doi: 10.1016/j.biortech.2010.11.018 pmid: 21112777
[101] Wang Z Y, Liu G C, Zheng H, Li F M, Ngo H H, Guo W S, Liu C, Chen L, Xing B S. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol, 2015 177:308-317.
doi: 10.1016/j.biortech.2014.11.077 pmid: 25496953
[102] Hussain M, Farooq M, Nawaz A, Al-Sadi A M, Solaiman Z M, Alghamdi S S, Ammara U, Ok Y S, Siddique K H M. Biochar for crop production: potential benefits and risks. J Soil Sediment, 2017,17:685-716.
doi: 10.1007/s11368-016-1360-2
[103] Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones P D, Codling G, Giesy J P. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environ Pollut, 2016,218:1-7.
doi: 10.1016/j.envpol.2016.08.014 pmid: 27537986
[104] Kookana R S, Sarmah A K, Van Zwieten L, Krull E, Singh B. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron, 2011,112:103-143.
doi: 10.1016/B978-0-12-385538-1.00003-2
[105] McGrath T E, Wooten J B, Chan W G, Hajaligol M R. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation. Food Chem Toxicol, 2007,45:1039-1050.
doi: 10.1016/j.fct.2006.12.010 pmid: 17303297
[106] Buss W, Graham M, MacKinnon G, Mašek O. Strategies for producing biochars with minimum PAH contamination. J Anal Appl Pyrol, 2016,119:24-30.
doi: 10.1016/j.jaap.2016.04.001
[107] Wang C, Wang Y, Herath H. Polycyclic aromatic hydrocarbons (PAHs) in biochar—their formation, occurrence and analysis: a review. Org Geochem, 2017,114:1-11.
doi: 10.1016/j.orggeochem.2017.09.001
[108] Brown R A, Kercher A K, Nguyen T H, Nagle D C, Ball W P. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem, 2006,37:321-333.
doi: 10.1016/j.orggeochem.2005.10.008
[109] Huang H, Yao W, Lia R, Ali A, Du J, Guo D, Xiao R, Guo Z, Zhang Z, Awasthi M K. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresour Technol, 2018,249:487-493.
doi: 10.1016/j.biortech.2017.10.020 pmid: 29073559
[110] Wang X, Li C, Li Z, Yu G, Wang Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotox Environ Safe, 2019,168:45-52.
doi: 10.1016/j.ecoenv.2018.10.022
[111] Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil (aka IBI Biochar Standards) Version 2.1, 2015. pp 14-15.
[112] Liu Z, Wang L, Xiao H, Guo X, Urbanovich O, Nagorskaya L, Li X. A review on control factors of pyrolysis technology for plants containing heavy metals. Ecotox Environ Safe, 2020,191:110181.
doi: 10.1016/j.ecoenv.2020.110181
[113] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013,46:3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013,46:3324-3333 (in Chinese with English abstract).
[114] Xu X Y, Cao X D, Zhao L, Wang H L, Yu H R, Gao B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut R, 2013,20:358-368.
doi: 10.1007/s11356-012-0873-5
[115] Zhu L, Lei H W, Wang L, Yadavalli G, Zhang X S, Wei Y, Liu Y P, Yan D, Chen S L, Ahring B. Biochar of corn stover: microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J Anal Appl Pyrol, 2015,115:149-156.
doi: 10.1016/j.jaap.2015.07.012
[116] Antonherrero R, Garciadelgado C, Alonsoizquierdo M, Garciarodriguez G, Cuevas J, Eymar E. Comparative adsorption of tetracyclines on biochars and stevensite: looking for the most effective adsorbent. Appl Clay Sci, 2018,160:162-172.
doi: 10.1016/j.clay.2017.12.023
[117] Koutcheiko S, Monreal C M, Kodama H, McCracken T, Kotlyar L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour Technol, 2007,98:2459-2464.
doi: 10.1016/j.biortech.2006.09.038 pmid: 17098423
[118] Fu P, Hu S, Xiang J, Sun L S, Su S, An S M. Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J Anal Appl Pyrol, 2012,97:130-136.
doi: 10.1016/j.jaap.2012.05.012
[119] Weber K, Quicker P. Properties of biochar. Fuel, 2018,217:240-261.
doi: 10.1016/j.fuel.2017.12.054
[120] Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J M, Oneill B, Skjemstad J O, Thies J E, Luizao F J, Petersen J B, Neves E G. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 2006,70:1719-1730.
doi: 10.2136/sssaj2005.0383
[121] Lee J W, Kidder M, Evans B R. Characterization of biochars produced from corn stovers for soil amendment. Environ Sci Technol, 2010,44:7970-7974.
doi: 10.1021/es101337x pmid: 20836548
[122] Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman A R. Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol, 2010,101:8868-8872.
doi: 10.1016/j.biortech.2010.06.088 pmid: 20634061
[123] Suliman W, Harsh J B, Fortuna A, Garciaperez M, Abulail N I. Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns. Environ Sci Technol, 2017,51:5071-5081.
pmid: 28358986
[124] Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 2011,163:247-255.
doi: 10.1016/j.geoderma.2011.04.021
[125] Yu K L, Lau B F, Show P L, Ong H C, Ling T C, Chen W, Ng E P, Chang J. Recent developments on algal biochar production and characterization. Bioresour Technol, 2017,246:2-11.
doi: 10.1016/j.biortech.2017.08.009 pmid: 28844690
[126] Li L C, Zou D S, Xiao Z H, Zeng X Y, Zhang L Q, Jiang L D, Wang A D, Ge D B, Zhang G L, Liu F. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J Clean Prod, 2019,210:1324-1342.
doi: 10.1016/j.jclepro.2018.11.087
[127] Lian F, Xing B S. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environ Sci Technol, 2017,51:13517-13532.
doi: 10.1021/acs.est.7b02528 pmid: 29116778
[128] Wang H Y, Gao B, Fang J, Ok Y S, Xue Y W, Yang K, Cao X D. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecol Eng, 2018,121:124-129.
doi: 10.1016/j.ecoleng.2017.06.029
[129] Khare P, Dilshad U, Rout P K, Yadav V, Jain S. Plant refuses driven biochar: application as metal adsorbent from acidic solutions. Arab J Chem, 2013,10(S2):S3054-S3063.
doi: 10.1016/j.arabjc.2013.11.047
[130] 陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望. 农业环境科学学报, 2014,33:821-828.
Chen W F, Zhang W M, Meng J. Biochar and agro-ecological environment: review and prospect. J Agro-Environ Sci, 2014,33:821-828 (in Chinese with English abstract).
[131] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol, 2008,42:5137-5143.
doi: 10.1021/es8002684 pmid: 18754360
[132] El-Naggar A, Lee S S, Rinklebe J, Farooq M, Song H, Sarmah A K, Zimmerman A R, Ahmad M, Shaheen S M, Ok Y S. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 2019,337:836-554.
[133] Bruun E W. Application of fast pyrolysis biochar to a loamy soil-effects on carbon and nitrogen dynamics and potential for carbon sequestration. PhD thesis. Technical Univ. of Denmark, 2800 Kgs. Lyngby, 2011.
[134] Gray M, Johnson M G, Dragila M I, Kleber M. Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg, 2014,61:196-205.
doi: 10.1016/j.biombioe.2013.12.010
[135] Fang Q, Chen B, Lin Y, Guan Y. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol, 2014,48:279-288.
doi: 10.1021/es403711y pmid: 24289306
[136] Das O, Sarmah A K. The love-hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ, 2015,512/513:682-685.
doi: 10.1016/j.scitotenv.2015.01.061
[137] Zhang J, You C. Water holding capacity and absorption properties of wood chars. Energ Fuel, 2013,27:2643-2648.
doi: 10.1021/ef4000769
[138] Wiedemeier D B, Abiven S, Hockaday W C, Keiluweit M, Kleber M, Masiello C A, McBeath A V, Nico P S, Pyle L A, Schneider M P W, Smernik R J, Wiesenberg G L B, Schmidt M W I. Aromaticity and degree of aromatic condensation of char. Org Geochem, 2015,78:135-143.
doi: 10.1016/j.orggeochem.2014.10.002
[139] Manyà J J, Ortigosa M A, Laguarta S, Manso J A. Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar. Fuel, 2014,133:163-172.
doi: 10.1016/j.fuel.2014.05.019
[140] Kuhlbusch T A J. Method for determining black carbon in vegetation fire residues. Environ Sci Technol, 1995,29:2695-2702.
doi: 10.1021/es00010a034 pmid: 22191973
[141] Spokas K. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage, 2010,1:289-303.
doi: 10.4155/cmt.10.32
[142] Li W, Dang Q, Brown R C, Laird D, Wright M M. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresour Technol, 2017,241:959-968.
doi: 10.1016/j.biortech.2017.06.049 pmid: 28637163
[143] Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol, 2012,46:11770-11778.
doi: 10.1021/es302545b pmid: 23013285
[144] Han L F, Ro K S, Wang Y, Sun K, Sun H R, Libra J A, Xing B S. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci Total Environ, 2018,616/617:335-344.
doi: 10.1016/j.scitotenv.2017.11.014
[145] Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann J J. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ, 2017,574:24-33.
doi: 10.1016/j.scitotenv.2016.08.190 pmid: 27621090
[146] Sigua G C, Novak J M, Watts D W, Cantrell K B, Shumaker P D, Szögi A A, Johnson M G. Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere, 2014,103:313-321.
doi: 10.1016/j.chemosphere.2013.12.024 pmid: 24397887
[147] Crombie K, Mašek O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy, 2015,7:349-361.
doi: 10.1111/gcbb.2015.7.issue-2
[148] Wang B, Gao B, Fang J. Recent advances in engineered biochar productions and applications. Crit Rev Env Sci Tec, 2017,47:2158-2207.
doi: 10.1080/10643389.2017.1418580
[149] Wang T, Liu X Q, Men Q Y, Ma C C, Liu Y, Ma W, Liu Z, Wei M B, Li C X, Yan Y S. Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets. Chin J Catal, 2019,40:886-894.
doi: 10.1016/S1872-2067(19)63330-9
[150] 左卫元, 仝海娟, 史兵方, 陈盛余, 段艳, 廖安平. 生物炭/锰氧化物复合材料对苯甲酸的吸附研究. 无机盐工业, 2018,50(8):57-61.
Zhuo W Y, Tong H G, Shi B F, Chen S Y, Duan Y, Liao A P. Adsorption effect of biochar/manganese oxide composite material on benzoic acid. Inorg Chem Ind, 2018,50(8):57-61 (in Chinese with English abstract).
[151] Hu X, Ding Z, Zimmerman A R, Wang S, Gao B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res, 2015,68:206-216.
doi: 10.1016/j.watres.2014.10.009 pmid: 25462729
[152] Thines K R, Abdullah E C, Mubarak N M, Ruthiraan M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application. Renew Sust Energ Rev, 2017 67:257-276.
[153] Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol, 2013,130:457-462.
doi: 10.1016/j.biortech.2012.11.132 pmid: 23313693
[154] 吕宏虹, 宫艳艳, 唐景春, 黄耀, 高凯. 生物炭及其复合材料的制备与应用研究进展. 农业环境科学学报, 2015,34:1429-1440.
Lyu H H, Gong Y Y, Tang J C, Huang Y, Gao K. Advances in preparation and applications of biochar and its composites. J Agro-Environ Sci, 2015,34:1429-1440 (in Chinese with English abstract).
[155] Chen B, Chen Z, Lyu S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol, 2011,102:716-723.
doi: 10.1016/j.biortech.2010.08.067 pmid: 20863698
[156] Trakal L, Veselsk V, Safak I, Vtkov M, Chalov S, Komarek M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour Technol, 2016,203:318-324.
doi: 10.1016/j.biortech.2015.12.056 pmid: 26748045
[157] Uchimiya M, Bannon D I, Wartelle L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J Agric Food Chem, 2012,60:1798-1809.
doi: 10.1021/jf2047898 pmid: 22280497
[158] Huff M D, Lee J W. Biochar-surface oxygenation with hydrogen peroxide. J Environ Manage, 2016,165:17-21.
doi: 10.1016/j.jenvman.2015.08.046 pmid: 26402867
[159] Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman A R, Ro K S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J, 2012, 200-202:673-680.
doi: 10.1016/j.cej.2012.06.116
[160] Vithanage M, Rajapaksha A U, Zhang M, Thiele-Bruhn S, Lee S S, Ok Y S. Acid-activated biochar increased sulfamethazine retention in soils. Environ Sci Pollut R, 2015,22:2175-2186.
doi: 10.1007/s11356-014-3434-2
[161] Hadjittofi L, Prodromou M, Pashalidis I. Activated biochar derived from cactus fibres: preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol, 2014,159:460-464.
pmid: 24718356
[162] Ding Z, Hu X, Wan Y, Wang S, Gao B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali- modified biochar: Batch and column tests. J Ind Eng Chem, 2016,33:239-245.
[163] Fan Y, Wang B, Yuan S, Wu X, Chen J, Wang L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour Technol, 2010,101:7661-7664.
doi: 10.1016/j.biortech.2010.04.046 pmid: 20457515
[164] Li B, Yang L, Wang C Q, Zhang Q P, Liu Q C, Li Y D, Xiao R. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 2017,175:332-340.
doi: 10.1016/j.chemosphere.2017.02.061 pmid: 28235742
[165] Dehkhoda A M, Ellis N, Gyenge E. Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Micropor Mesopor Mat, 2016,224:217-228.
doi: 10.1016/j.micromeso.2015.11.041
[166] Regmi P, Moscoso J L G, Kumar S, Cao X Y, Mao J D, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage, 2012,109:61-69.
doi: 10.1016/j.jenvman.2012.04.047 pmid: 22687632
[167] Ahmed M B, Zhou J L, Ngo H H, Guo W S, Chen M F. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol, 2016,214:836-851.
doi: 10.1016/j.biortech.2016.05.057 pmid: 27241534
[168] Samsuri A W, Sadegh-Zadeh F, She-Bardan B J. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. J Environ Chem Eng, 2013,1:981-988.
doi: 10.1016/j.jece.2013.08.009
[169] Wang Y, Wang X J, Liu M, Wang X, Wu Z, Yang L Z, Xia S Q, Zhao J F. Cr(VI) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating. Ind Crops Prod, 2012,39:81-88.
doi: 10.1016/j.indcrop.2012.02.015
[170] Zhang M, Gao B, Yao Y, Inyang M. Phosphate removal ability of biochar/MgAl-LDHultra-fine composites prepared by liquid-phase deposition. Chemosphere, 2013,92:1042-1047.
pmid: 23545188
[171] Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour Techn, 2014,169:403-408.
doi: 10.1016/j.biortech.2014.07.014
[172] Divband Hafshejani L, Hooshmand A, Naseri A A, Mohammadia A S, Abbasib F, Bhatnagarc A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecolog Engin, 2016,95:101-111.
doi: 10.1016/j.ecoleng.2016.06.035
[173] Zhu S S, Huang X C, Wang D W, Wang L, Ma F. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential. Chemosphere, 2018,207:50-59.
pmid: 29772424
[174] 朱丹丹, 周启星. 功能纳米材料在重金属污染水体修复中的应用研究进展. 农业环境科学学报, 2018,37:1551-1564.
Zhu D D, Zhou Q X. A review on the removal of heavy metals from water using nanomaterials. J Agro-Environ Sci, 2018,37:1551-1564 (in Chinese with English abstract).
[175] Tan X F, Liu Y G, Gu Y L, Xu Y, Zeng G M, Hu X J, Liu S B, Wang X, Liu S M, Li J. Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol, 2016,212:318-333
doi: 10.1016/j.biortech.2016.04.093 pmid: 27131871
[176] 蒲生彦, 贺玲玲, 刘世宾. 生物炭复合材料在废水处理中的应用研究进展. 工业水处理, 2019,39(9):1-8.
Pu S Y, He L L, Liu S B. Review on the preparation of biochar composites and its applications in wastewater treatment. Ind Water Treat, 2019,39(9):1-8 (in Chinese with English abstract).
[177] Rajapaksha A U, Chen S S, Tsang D C W, Zhang M, Vithanage M, Mandal S, Gao B, Bolan N S, Ok Y S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification Chemosphere, 2016,148:276-291.
doi: 10.1016/j.chemosphere.2016.01.043 pmid: 26820777
[178] Rajapaksha A U, Vithanage M, Ahmad M, Seo D C, Cho J S, Lee S E, Lee S S, Ok Y S. Enhanced sulfamethazine removal by steam-activated invasive plant derived biochar. J Hazard Mater, 2015,290:43-50.
doi: 10.1016/j.jhazmat.2015.02.046 pmid: 25734533
[179] Zhang C S, Liu L, Zhao M H, Rong H W, Xu Y. The environmental characteristics and applications of biochar. Environ Sci Pollut R, 2018,25:21525-21534.
doi: 10.1007/s11356-018-2521-1
[180] Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K. N2O and CH4 emission from soil amended with steam-activated biochar. J Plant Nutr Soil Sc, 2014,177:34-38.
doi: 10.1002/jpln.201300495
[181] Lima I M, Marshall W E. Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons. Chem Technol Biot, 2005,80:1054-1061.
[182] De M, Azargohar R, Dalai A K, Shewchuk S R. Mercury removal by bio-char based modified activated carbons. Fuel, 2013,103:570-578.
doi: 10.1016/j.fuel.2012.08.011
[183] Borchard N, Wolf A, Laabs V, Aeckersberg R, Scherer H, Moeller A, Amelung W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching: a greenhouse experiment. Soil Use Manage, 2012,28:177-184.
doi: 10.1111/sum.2012.28.issue-2
[184] Foo K Y, Hameed B H. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass Bioenergy, 2011,35:3257-3261.
doi: 10.1016/j.biombioe.2011.04.023
[185] 樊兴君, 尤进茂, 谭干祖, 俞贤达, 焦天权. 微波促进有机化学反应研究进展. 化学进展, 1998, (3):51-61.
Fan X J, You J M, Tan G Z, Yu X D, Jiao T Q. Progress in microwave-organic reaction enhancement chemistry. Prog Chem, 1998, (3):51-61.
[186] Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrol, 2009,86:161-167.
doi: 10.1016/j.jaap.2009.05.006
[187] Mohamed B A, Ellis N, Kim C S, Bi X, Emam A E R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water holding capacity and fertility of sandy soil. Sci Total Environ, 2016,566/567:387-397.
doi: 10.1016/j.scitotenv.2016.04.169
[188] Du Z, Zheng T, Wang P, Hao L, Wang Y. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresour Technol, 2016,201:41-49.
doi: 10.1016/j.biortech.2015.11.009 pmid: 26630582
[189] Shen B, Li G, Wang F, Wang Y, He C, Zhang M, Singh S. Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J, 2015,272:28-37.
doi: 10.1016/j.cej.2015.03.006
[190] Li G, Shen B, Li F, Tian L, Singh S, Wang F. Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol, 2015,133:43-50.
doi: 10.1016/j.fuproc.2014.12.042
[191] Menendez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge. Water Res, 2002,36:3261-3264.
doi: 10.1016/s0043-1354(02)00017-9 pmid: 12188123
[192] Lyu H, Gao B, He F, Ding C, Tang J, Crittenden J C. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain Chem Eng, 2017,5:9568-9585.
doi: 10.1021/acssuschemeng.7b02170
[193] Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Yu G, Winglee J, Wiesner M R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater, 2016,305:156-163.
pmid: 26685062
[194] Cai H, Xu L, Chen G, Peng C, Ke F, Liu Z, Li D, Zhang Z, Wan X. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball mill. Appl Surf Sci, 2016,375:74-84.
doi: 10.1016/j.apsusc.2016.03.005
[195] Lyu H, Gao B, He F, Zimmerman A, Ding C, Huang H, Tang J. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ Poll, 2018,233:54-63.
doi: 10.1016/j.envpol.2017.10.037
[196] Peterson S C, Jackson M A, Kim S, Palmquist D E. Increasing biochar surface area: optimization of ball milling parameters. Powder Technol, 2012,228:115-120.
doi: 10.1016/j.powtec.2012.05.005
[197] Wang D, Zhang W, Hao X, Zhou D. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol, 2013,47:821-828.
pmid: 23249307
[198] Chen M, Wang D, Yang F, Xu X, Xu N, Cao X. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environ Pollut, 2017,230:540-549.
doi: 10.1016/j.envpol.2017.06.101 pmid: 28709053
[199] 陈健康. 紫外辐射改性碳材料对水中重金属的吸附研究. 重庆大学硕士学位论文, 重庆, 2014.
Chen J K. The Study of Adsorption Heavy Metals from Aqueous Solution Using Ultraviolet Radiation Modified Carbon Materials. MS Thesis of Chongqing University, Chongqing, China, 2014 (in Chinese with English abstract).
[200] 李桥, 高屿涛, 姜蔚, 雍毅. 紫外辐照改性生物炭对土壤中Cd的稳定化效果. 环境工程学报, 2017,11:5708-5714.
Li Q, Gao Y T, Jiang W, Yong Y. Stabilization of Cd contaminated soil by ultraviolet irradiation modified biochar. Chin J Environ Engin, 2017,11:5708-5714 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[4] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[7] 王诗雅, 郑殿峰, 冯乃杰, 梁喜龙, 项洪涛, 冯胜杰, 靳丹, 刘美玲, 牟保民. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000.
[8] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[9] 郭学民,赵晓曼,徐珂,王芯蕊,张辰瑜,东方阳. 蓖麻种子结构的解剖和显微观察[J]. 作物学报, 2020, 46(6): 914-923.
[10] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[11] 陈夕军, 唐滔, 李丽丽, 陈宸, 陈煜文, 张亚芳, 左示敏. 水稻多聚半乳糖醛酸酶抑制蛋白家族OsPGIP结构及基因表达特征
分析
[J]. 作物学报, 2020, 46(12): 1884-1893.
[12] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[15] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!