作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2407-2422.doi: 10.3724/SP.J.1006.2021.04231
王瑞莉1(), 王刘艳1, 雷维1,2, 吴家怡1, 史红松1, 李晨阳1, 唐章林1,2, 李加纳1,2, 周清元1,2,*(), 崔翠1,*()
WANG Rui-Li1(), WANG Liu-Yan1, LEI Wei1,2, WU Jia-Yi1, SHI Hong-Song1, LI Chen-Yang1, TANG Zhang-Lin1,2, LI Jia-Na1,2, ZHOU Qing-Yuan1,2,*(), CUI Cui1,*()
摘要:
随着土壤酸化程度的加剧, 铝毒害已成为影响种子萌发质量和作物产量的重要胁迫因子之一。为研究铝毒对油菜种子萌发过程影响的分子机理, 本文采用RNA-seq技术对耐铝品系18D300和敏铝品系27011进行转录组分析, 共检测到9344个显著差异表达基因[|log2(fold change)|≥1和FDR≤0.05], 其中4406个DEGs基因上调, 4938个DEGs下调。GO富集分析发现, 差异表达基因主要与氧化反应、细胞碳水化合物代谢过程、转运蛋白活性等相关。KEGG富集分析表明, 差异表达基因主要富集于苯丙烷生物合成、淀粉和蔗糖代谢、MAPK信号通路-植物、植物-病原体相互作用、植物激素信号转导等途径。此外, 通过整合RNA转录组测序和铝毒胁迫下油菜萌发期根系相关性状的QTL定位结果, 共筛出44个差异表达基因(10个下调和34个上调), 这些基因主要与氧化应激、渗透调节、细胞壁修饰、转运蛋白、激素信号传导等功能有关。
[1] |
Zhang Q Y, Cao Z, Sun X D, Zuang C C, Huang W Y, Li Y F. Aluminum trichloride Induces hypertension and disturbs the function of erythrocyte membrane in male rats. Biol Trace Elem Res, 2015, 171:1-8.
doi: 10.1007/s12011-016-0635-1 |
[2] |
Balkovic J, Kollar J, Simonovic V, Zarnovican H. Plant assemblages respond sensitively to aluminium solubility in acid soils. Commun Ecol, 2014, 15:94-103.
doi: 10.1556/ComEc.15.2014.1.10 |
[3] | Wu L Y, Guo Y Y, Cai S G, Kuang L H, Shen Q F, Wu D Z, Zhang G P. The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley. J Environ Biol, 2020, 71:6512-6523. |
[4] | Ahn S J, Matsumoto H. The role of the plasma membrane in the response of plant roots to aluminum toxicity. Plant Signal Behav, 2006, 1:34-75. |
[5] |
Zhou W J, Zhang G Q, Tuvesson S, Dayteg C, Gertsson B. Genetic survey of Chinese and Swedish oilseed rape ( Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol, 2006, 53:443-447.
doi: 10.1007/s10722-004-7862-6 |
[6] | 马志慧. 铝胁迫下杉木无性系苗若干生理过程及转录组的研究. 福建农林大学博士学位论文, 福建福州, 2015. |
Ma Z H. The Research on Several Physiological Processes and Transcriptome Sequencing of the Seedlings of Chinese Fir Clone under Aluminum Stress. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2015 (in Chinese with English abstract). | |
[7] |
Huang C F, Yamaji N, Ma J F. Knockout of a bacterial-type ATP-binding cassette transporter gene, At STAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol, 2010, 153:1669-1677.
doi: 10.1104/pp.110.155028 |
[8] |
Ryan P R, Tyerman S D, Sasaki T, Furuichi T, Yamamoto Y, Zhang W H, Delhaize E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot, 2011, 62:9-20.
doi: 10.1093/jxb/erq272 pmid: 20847099 |
[9] | Chen L S, Qi Y P, Jiang H X, Yang L T, Yang G H. Photosynthesis and photoprotective systems of plants in response to aluminum toxicity. Afr J Biotechnol, 2010, 9:9237-9247. |
[10] |
Rehmus A, Bigalke M, Valarezo C, Castillo J M, Wilcke W. Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations. Plant Soil, 2014, 382:301-315.
doi: 10.1007/s11104-014-2110-0 |
[11] |
Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017, 8:1512.
doi: 10.3389/fpls.2017.01512 pmid: 28932230 |
[12] | 王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元, 崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选. 中国农业科学, 2020, 53:1510-1523. |
Wang L Y, Wang R L, Ye S, Gao H H, Lei W, Chen L Y, Wu J Y, Meng L J, Yuan F, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping and candidate genes screening of related traits in Brassica napus L. during the germination under tribenuron-methyl stress. Sci Agric Sin, 2020, 53:1510-1523 (in Chinese with English abstract). | |
[13] | 李明. 甜玉米苗期耐铝性状QTL定位及转录组分析. 仲恺农业工程学院硕士学位论文, 广东广州, 2019. |
Li M. QTL Mapping and Transcriptome Analysis of Aluminum Tolerance Traits in Sweet Corn Seedings. MS Thesis of Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China, 2019 (in Chinese with English abstract). | |
[14] |
Wang T Y, Hou L T, Jian H J, Di F F, Li J N, Liu L Z. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Mol Genet Genomics, 2018, 293:1421-1435.
doi: 10.1007/s00438-018-1468-8 |
[15] |
Jian H J, Yang B, Zhang A X, Zhang L, Xu X F, Li J N, Liu L Z. Screening of candidate leaf morphology genes by integration of QTL mapping and RNA sequencing technologies in oilseed rape ( Brassica napus L.). PLoS One, 2017, 12:e0169641.
doi: 10.1371/journal.pone.0169641 |
[16] | 王瑞莉, 王刘艳, 叶桑, 郜欢欢, 雷维, 吴家怡, 袁芳, 孟丽姣, 唐章林, 李加纳, 周清元, 崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位. 作物学报, 2020, 46:832-843. |
Wang R L, Wang L Y, Ye S, Gao H H, Lei W, Wu J Y, Yuan F, Meng L J, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress. Acta Agron Sin, 2020, 46:832-843 (in Chinese with English abstract). | |
[17] |
D’Cunha G B, Satyanarayan V, Nair P M. Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochem, 1996, 42:17-20.
doi: 10.1016/0031-9422(95)00914-0 |
[18] | 张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2008. pp 180-194. |
Zhang Z A, Chen Z Y. Experimental Technology of Plant Physiology. Changchun: Jilin University Publishers, 2008. pp 180-194(in Chinese). | |
[19] |
Fimognari L, Dolker R, Kaselyte G, Jensen C N G, Akhtar S S, Grosskinsky D K, Roitsch T. Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods, 2020, 16:2-9.
doi: 10.1186/s13007-019-0549-y |
[20] |
Heath R, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125:189-198.
pmid: 5655425 |
[21] |
Dudziak K, Zapalska M, Borner A, Szczerba H, Kowalczyk K, Nowak M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci Rep, 2019, 9:2743.
doi: 10.1038/s41598-019-39154-w |
[22] |
Chen Q, Zhang X, Wang S, Wang Q, Wang G, Nian H, Li K, Yu Y, Chen L. Transcriptional and physiological changes of alfalfa in response to aluminium stress. J Agric Sci, 2011, 149:737-751.
doi: 10.1017/S0021859611000256 |
[23] |
Kong X Y, Peng Z P, Li D X, Ma W N, An R D, Khan D, Wang X X, Liu Y, Yang E, He Y Z, Wu L Q, Zhang B G, Rengel Z, Wang J M, Chen Q. Magnesium decreases aluminum accumulation and plays a role in protecting maize from aluminum-induced oxidative stress. Plant Soil, 2020, 457:71-81.
doi: 10.1007/s11104-020-04605-1 |
[24] |
Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene ( AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95:157-168.
doi: 10.1007/s11103-017-0644-2 |
[25] |
Liu W J, Xu F J, Lyu T, Zhou W W, Chen Y, Jin C W, Lu L L, Lin X Y. Spatial responses of antioxidative system to aluminum stress in roots of wheat ( Triticum aestivum L.) plants. Sci Total Environ, 2018, 627:462-469.
doi: 10.1016/j.scitotenv.2018.01.021 |
[26] |
Bhoomika K, Pyngrope S, Dubey R S. Differential responses of antioxidant enzymes to aluminum toxicity in two rice ( Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar. Plant Growth Regul, 2013, 71:235-252.
doi: 10.1007/s10725-013-9824-5 |
[27] |
Ma Z H, Lin S Z. Transcriptomic revelation of phenolic compounds involved in aluminum toxicity responses in roots of Cunninghamia lanceolata (Lamb.) Hook. Genes, 2019, 10:835.
doi: 10.3390/genes10110835 |
[28] |
Kidd P, Poschenrieder C, Llugany M, Gunse B, Barcelo J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( Zea mays L.). J Exp Bot, 2001, 52:1339-1352.
pmid: 11432953 |
[29] |
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling—an overview. Age Res Rev, 2020, 62:101127.
doi: 10.1016/j.arr.2020.101127 |
[30] |
Zhu Y, Chen Y H, Zhang X, Xie G Y, Qin M J. Copper stress-induced changes in biomass accumulation, antioxidant activity and flavonoid contents in Belamcanda chinensis Calli. Plant Cell Tissue Organ Cult, 2020, 142:299-311.
doi: 10.1007/s11240-020-01863-w |
[31] |
Yoshibay Y, Kiyosue T, Katagiri T, Uedr H, Mizoguchi T, Yamaguchishinozaki K, Wdad K, Harada Y, Shinozaki K. Correlation between the induction of a gene for delta 1-pyrroline- 5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J, 2010, 7:751-760.
doi: 10.1046/j.1365-313X.1995.07050751.x |
[32] |
Liu L J, Huang L, Lin X Y, Sun C L. Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Rep, 2020, 39:567-575.
doi: 10.1007/s00299-020-02513-3 |
[33] | Eva V, Dirk I, Frank V B. Signal transduction during oxidative stress. J Exp Bot, 2002: 1227-1236. |
[34] |
Meng Y, Mao J P, Tahir M M, Wang H, Wei Y H, Zhao C D, Li K, Ma D D, Zhao C P, Zhang D. Mdm-miR160 participates in auxin-induced adventitious root formation of apple rootstock. Sci Hortic, 2020, 270:109442.
doi: 10.1016/j.scienta.2020.109442 |
[35] | Wang Q, Nian F, Zhao L, Li F, Yang H, Yang Y. Exogenous indole-3-acetic acid could reduce the accumulation of aluminum in root apex of wheat ( Triticum aestivum L.) under Al stress. J Soil Sci Plant Nutr, 2013, 13:534-543. |
[36] |
Illgen S, Zintl S, Zuther E, Hincha D K, Schmulling T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Mol Biol, 2020, 103:303-320.
doi: 10.1007/s11103-020-00993-1 |
[37] |
Sun P, Tian Q Y, Zhao M G. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol, 2007, 48:1229-1235.
doi: 10.1093/pcp/pcm077 |
[38] | Sun C L, Lyu T, Huang L, Liu X X, Jin C W, Lin X Y. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res, 2020, 68:12642. |
[39] |
Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S. Cloning, characterization, and expression of xyloglucan endotransglucosy-lase/hydrolase and expansion genes associated with petalgrowth and development during carnation flower opening. J Exp Bot, 2011, 62:815-823.
doi: 10.1093/jxb/erq319 pmid: 20959626 |
[40] |
Cronmiller E, Toor D, Shao N C, Kariyawasam T, Wang M H, Lee J H. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep, 2019, 9:12204.
doi: 10.1038/s41598-019-48523-4 pmid: 31434930 |
[41] |
Liu Z D, Wang H C, Xu R K. The effects of root surface charge and nitrogen forms on the adsorption of aluminum ions by the roots of rice with different aluminum tolerances. Plant Soil, 2016, 408:1-11.
doi: 10.1007/s11104-016-2794-4 |
[42] |
Dongwon B, Joon Y C, Kang S, Bokyung P, Hyo J L, Hong H, Jin C H, Hoon K D, Chul K M, Yeol L S. The Arabidopsis a zinc finger domain protein ARS1 isessential for seed germination and ROS homeostasis in response to ABA and oxidative stress. Front Plant Sci, 2015, 6:963.
doi: 10.3389/fpls.2015.00963 pmid: 26583028 |
[43] |
Mowla S B, Cuypers A, Driscoll S P, Kiddle G, Thomson J, Foyer C H, Theodoulou F L. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J, 2010, 48:743-756.
doi: 10.1111/tpj.2006.48.issue-5 |
[44] |
Rizhsky L, Davletova S, Liang H J, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 2004, 279:11736-11743.
doi: 10.1074/jbc.M313350200 |
[45] |
Ligaba A, Katsuhara M, Ryan P R, Shibasaka M, Matsumoto H. The Bn ALMT1 and Bn ALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol, 2006, 142:1294-1303.
doi: 10.1104/pp.106.085233 |
[46] |
Xia J, Yamaji N, Kasai T, Ma J F. Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA, 2010, 107:18381-18385.
doi: 10.1073/pnas.1004949107 |
[47] |
Ji X D, Chun H C, Zhi X C. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51:21-37.
doi: 10.1023/A:1020780022549 |
[48] |
Yokosho K, Yamaji N, Ma J F. Global transcriptome analysis of Al-inducedgenes in an Al accumulating species, common buckwheat ( Fagopyrum esculentum Moench). Plant Cell Physiol, 2014, 55:2077-2091.
doi: 10.1093/pcp/pcu135 pmid: 25273892 |
[49] | Gamas P, Niebel F D C, Lescure N, Cullimore J. Use of a subractive sybridization approach to identify new Medicago truncatula gene induced during root nodule development. Mol Plant Mirobe Interact, 1996, 9:233-242. |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[12] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[13] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[14] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[15] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
|