作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2423-2439.doi: 10.3724/SP.J.1006.2021.02084
LIU Ya-Wen1(), ZHANG Hong-Yan1,2,*(), CAO Dan2, LI Lan-Zhi2
摘要:
基于多平台基因表达数据挖掘水稻胁迫相关基因, 可增加关键基因预测的可靠性, 获得更具普适意义的结果。本研究从NCBI数据库中收集了与水稻非生物胁迫相关的94份affymetrix基因芯片数据和42份RNA-seq转录组数据。首先对同一类型同一胁迫相关的多个数据集以数据转换法融合, 得到干旱胁迫相关的affymetrix数据集D_affy和RNA-seq数据集D_rnaseq, 盐胁迫相关的affymetrix数据集S_affy和RNA-seq数据集S_rnaseq; 接着对4个数据集分别基于Pearson线性相关系数的经典WGCNA法和基于MIC非线性相关系数的改进WGCNA法进行基因共表达网络分析, 共获取胁迫相关的8个Hub基因集; 进一步, 对同一胁迫相关的Hub基因进行整合分析, 得到最终的水稻干旱胁迫相关Hub基因1936个、盐胁迫相关的Hub基因1504个。最后, 从预测性能、富集分析、文献报道、STRING在线互作分析和Cytoscape可视化分析等多角度解析Hub基因的生物学意义。结果显示: Hub基因整体预测性能较优, 且大多富集到了与干旱/盐胁迫相关的通路上, 其中有文献已报道的干旱胁迫响应基因31个和盐胁迫响应基因22个。此外, 通过对Hub基因的互作分析, 预测得到11个干旱胁迫候选基因和5个盐胁迫候选基因。本研究为“高维度、小样本”的农作物基因测序数据的有效分析提供了新思路, 实验结果为抗逆水稻品种研究提供了参考。
[1] | Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, Li J G, Ding Y L, Shi Y T, Wang Y, Yang Y Q, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency. Sci China (Life Sci Edn), 2020, 63:635-674. |
[2] | Hossain M R, Bassel G W, Pritchard J, Sharma G P, Ford-Lloyd B V. Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified significance analysis of microarrays. Front Plant Sci, 2016, 7:567. |
[3] |
Zhou Y, Yang P, Cui F L, Zhang F T, Luo X D, Xie J K. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS One, 2016, 11(1):e0146242.
doi: 10.1371/journal.pone.0146242 |
[4] |
Song T, Das D, Yang F, Chen M X, Tian Y, Cheng C L, Sun C, Xu W F, Zhang J H. Genome-wide transcriptome analysis of roots in two rice varieties in response to alternate wetting and drying irrigation. Crop J, 2020, 8:586-601.
doi: 10.1016/j.cj.2020.01.007 |
[5] | Kaur S, Iquebal M A, Jaiswal S, Tandon G, Sundaram R M, Gautam R K, Suresh K P, Rai A, Kumar D. A meta-analysis of potential candidate genes associated with salinity stress tolerance in rice. Agric Gene, 2016, 1:126-134. |
[6] | Serin E A R, Nijveen H, Hilhorst H W M, Ligterink W. Learning from co-expression networks: possibilities and challenges. Front Plant Sci, 2016, 7:444. |
[7] |
Zhou G Y, Soufan O, Ewald J, Hancock R E W, Basu N, Xia J G. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res, 2019, 47(W1):W234-W241.
doi: 10.1093/nar/gkz240 |
[8] | 王凯莉, 张礼, 刘学军. 融合多平台表达数据的转录组差异表达分析. 计算机学报, 2018, 41:1195-1210. |
Wang K L, Zhang L, Liu X J. Differential expression analysis based on integrating transcriptome expression data from multiple platforms. Chin J Comp, 2018, 41:1195-1210 (in Chinese with English abstract). | |
[9] |
Cheng Y F, Li L, Qin Z S, Li X, Qi F. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis. J Cell Mol Med, 2020, 24:1-12.
doi: 10.1111/jcmm.v24.1 |
[10] | 李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45:1349-1364. |
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45:1349-1364 (in Chinese with English abstract). | |
[11] |
Zhu M D, Xie H J, Wei X J, Dossa K, Yu Y Y, Hui S J, Tang G H, Zeng X S, Yu Y H, Hu P S, Wang J L. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes, 2019, 10:719.
doi: 10.3390/genes10090719 |
[12] |
Lv Y M, Xu L, Dossa K, Zhou K, Zhu M D, Xie H J, Tang S J, Yu Y Y, Guo X Y, Zhou B. Identification of putative drought-responsive genes in rice using gene co-expression analysis. Bioinformation, 2019, 15:480-488.
doi: 10.6026/bioinformation |
[13] |
Hopper D W, Ghan R, Schlauch K A, Cramer G R. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC Plant Biol, 2016, 16:118.
doi: 10.1186/s12870-016-0804-6 |
[14] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46:1033-1051. |
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020, 46:1033-1051 (in Chinese with English abstract). | |
[15] |
Reshef D N, Reshef Y A, Finucane H K, Grossman S R, McVean G, Turnbaugh P J, Lander E S, Mitzenmacher M, Sabeti P C. Detecting novel associations in large data sets. Science, 2011, 334:1518-1524.
doi: 10.1126/science.1205438 pmid: 22174245 |
[16] | Britt C L, Weisburd D. Statistical Power. Handbook of Quantitative Criminology. New York: Springer, 2010. pp 313-32. |
[17] |
Durinck S, Spellman P T, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc, 2009, 4:1184-1191.
doi: 10.1038/nprot.2009.97 |
[18] |
Steffen D, Yves M, Arek K, Sean D, Bart D M, Alvis B, Wolfgang H. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 2005, 21:3439-3440.
pmid: 16082012 |
[19] | Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13(S3):7-14. |
[20] |
Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34:i884-i890.
doi: 10.1093/bioinformatics/bty560 |
[21] |
Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30:923-930.
doi: 10.1093/bioinformatics/btt656 |
[22] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom Biol, 2014, 15:31-46. |
[23] |
Smita S, Katiyar A, Pandey D M, Chinnusamy V, Archak S, Bansal K C. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice. Bioinformation, 2013, 9:72-78.
doi: 10.6026/bioinformation |
[24] |
Shaik R, Ramakrishna W. Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol, 2014, 164:481-495.
doi: 10.1104/pp.113.225862 pmid: 24235132 |
[25] |
Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. AgriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2017, 45(W1):W122-W129.
doi: 10.1093/nar/gkx382 |
[26] |
Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L J, Mering C V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019, 47(D1):D607-D613.
doi: 10.1093/nar/gky1131 |
[27] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom Res, 2003, 13:2498-2504.
doi: 10.1101/gr.1239303 |
[28] | 王胜昌, 涂海甫, 胡丹, 吴奈, 岑祥, 熊立仲. 水稻抗非生物逆境功能基因的发掘. 生命科学, 2016, 28:1216-1229. |
Wang S C, Tu H F, Hu D, Wu N, Cen X, Xiong L Z. The exploitation of rice functional genes for abiotic stress. Chin Bull Life Sci, 2016, 28:1216-1229 (in Chinese with English abstract). | |
[29] | Zahedi S M, Karimi M, Venditti A. Plants adapted to arid areas: specialized metabolites. Nat Prod Res, 2019: 1-18. |
[30] |
Murad M A, Khan A L, Muneer S. Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. Plants, 2020, 9:460.
doi: 10.3390/plants9040460 |
[31] |
Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu Y H, Buaboocha T, Chadchawan S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot, 2013, 86:94-105.
doi: 10.1016/j.envexpbot.2010.01.009 |
[32] | Ngan K G, Pati P K, Richaud F, Parizot B, Bidzinski P, Mai C D, Bès M, Bourrié I, Meynard D, Beeckman T, Selvaraj M G, Manabu I, Genga A M, Brugidou C, Do V N, Guiderdoni E, Morel J B, Gantet P. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol, 2015, 169:2935-2949. |
[33] |
Zong W, Tang N, Yang J, Peng L, Ma S Q, Xu Y, Li G L, Xiong L Z. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol, 2016, 171:2810-2825.
doi: 10.1104/pp.16.00469 pmid: 27325665 |
[34] |
Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62:316-329.
doi: 10.1111/j.1365-313X.2010.04146.x |
[35] |
Cheng Y W, Qi Y C, Zhu Q, Chen X, Wang N, Zhao X, Chen H Y, Cui X J, Xu L L, Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics, 2009, 9:3100-3114.
doi: 10.1002/pmic.200800340 |
[36] |
Fang H M, Meng Q L, Xu J W, Tang H J, Tang S Y, Zhang H S, Huang J. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol, 2015, 87:441-458.
doi: 10.1007/s11103-015-0294-1 |
[37] |
Ouyang J, Cai Z Y, Xia K F, Wang Y Q, Duan J, Zhang M Y. Identification and analysis of eight peptide transporter homologs in rice. Plant Sci, 2010, 179:374-382.
doi: 10.1016/j.plantsci.2010.06.013 |
[38] | Kothari K S, Dansana P K, Jitender G, Tyagi A K. Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front Plant Sci, 2016, 7:1057. |
[39] |
Wei Y D, Xu H B, Diao L R, Zhu Y H, Xie H G, Cai Q H, Wu F X, Wang Z H, Zhang J F, Xie H A. Protein repair L-isoaspartyl methyl transferase 1 ( PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. Plant Mol Biol, 2015, 89:475-492.
doi: 10.1007/s11103-015-0383-1 |
[40] |
He S, Tan L L, Hu Z L, Chen G P, Wang G X, Hu T Z. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genom, 2012, 287:39-54.
doi: 10.1007/s00438-011-0660-x |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[11] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|