欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 237-244.doi: 10.3724/SP.J.1006.2021.04111

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

山西省古交市大豆胞囊线虫新小种X12分布调查

练云1(), 王金社1, 魏荷1, 李金英1, 弓贵明2, 王树峰1, 张晶鹏1, 李茂林1, 郭建秋3, 卢为国1,*()   

  1. 1河南省农业科学院经济作物研究所 / 国家大豆改良中心郑州分中心 / 农业农村部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002
    2古交市种子服务站, 山西太原 030200
    3洛阳农林科学院, 河南洛阳 471023
  • 收稿日期:2020-05-18 接受日期:2020-09-13 出版日期:2021-02-12 网络出版日期:2020-09-22
  • 通讯作者: 卢为国
  • 作者简介:E-mail: lianyun262@126.com
  • 基金资助:
    河南省科技攻关项目(202102110158);中原科技创新领军人才工程(194200510003);国家自然科学基金项目(31901501)

Distribution survey of soybean cyst nematode of new race X12 in Gujiao city, Shanxi province

LIAN Yun1(), WANG Jin-She1, WEI He1, LI Jin-Ying1, GONG Gui-Ming2, WANG Shu-Feng1, ZHANG Jing-Peng1, LI Mao-Lin1, GUO Jian-Qiu3, LU Wei-Quo1,*()   

  1. 1Institute of Industrial Crops, Henan Academy of Agricultural Sciences / Zhengzhou Subcenter of National Soybean Improvement Center / Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Inprovement, Zhengzhou 450002, Henan, China
    2Gujiao Seed Service Station, Taiyuan 030200, Shanxi, China
    3Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan, China
  • Received:2020-05-18 Accepted:2020-09-13 Published:2021-02-12 Published online:2020-09-22
  • Contact: LU Wei-Quo
  • Supported by:
    Scientific and Technological Project of Henan Province(202102110158);Central Plains Science and Technology Innovation Leading Talent Project(194200510003);National Natural Science Foundation of China(31901501)

摘要:

X12是具有超强致病力的大豆胞囊线虫(SCN)新小种, 于2012年在山西省古交市邢家社首次发现, 该小种对大豆生产有巨大威胁。定期调查X12生理小种分布, 对有目的地采取防治措施阻止X12小种扩散有重要意义。本研究于2019—2020年调查古交市土样, 利用Riggs模式鉴定生理小种, 绘制古交市X12生理小种分布图, 探讨其周围生理小种类型及分布规律。结果表明, 在采集的受SCN感染的33份样本中, 26份鉴定出生理小种类型, 占采集样本的78.8%; 2号和4号生理小种在该地区分布广泛, 2号小种检出频率为57.7%; 4号小种检出频率为42.3%。4号小种群体能够侵染优异抗源兴县灰皮支(ZDD2315)且胞囊指数(female index, FI)大于10, 即被认定为X12小种, 在此次鉴定为4号小种的11份样本中, 有2份进一步鉴定为X12小种, 含重复采集2012年在邢家社发现的X12样本; 另有3份鉴定为4号小种的样本, 其SCN群体能在兴县灰皮支上寄生, 但FI未达到10。这26份样本的SCN群体能在Peking和PI88788上寄生, 且FI > 50的分别占73.1%和57.7%。表明, 除邢家社发现有X12小种, 在河口镇也发现了X12小种; 在邢家社周围810 km2仅检测到2号和4号小种; 有3份样本的SCN群体有可能会优先由4号小种进化为X12小种。建议在古交市采取有力、有效措施减缓SCN的致病力升级及X12小种扩散。

关键词: 大豆, 大豆胞囊线虫, X12, 调查, 生理小种

Abstract:

X12 was a new race of soybean cyst nematode (SCN) with super strong pathogenicity and it was first detected in Xingjiashe county, Gujiao city, Shanxi province, China in 2012, which was a huge threat to soybean production. The research of race X12 distribution is meaningful for developing management strategies to prevent race X12 population from spreading. Therefore, a survey for the distribution of soybean cyst nematode race X12 in Gujiao city was conducted in 2019 and 2020. A distribution of races was constructed based on Riggs model. The race distribution was discussed in this study. A total of 33 soil samples infected soybean cyst nematode were collected. Twenty-six were identified as physiological subtypes, accounting for 78.8% of the samples, in which race 2 and race 4 accounted for 57.7% (15 samples) and 42.3% (11 samples), respectively. In general, race X12 was determined if race 4 population virulent on ZDD2315 accession with female index (FI) > 10. In 11 samples determined as race 4, including two samples were further determined as race X12 including the sample collected from Xingjiashe location, which was the original location detected as race X12 in 2012. There were three other SCN populations which determined as race 4 could virulent on ZDD2315 but with FI < 10. There were 73.1% and 57.7% of populations with FI > 50 among 26 evaluated populations on Peking and PI88788, respectively. The results showed that race X12 population were also detected in Hekouzhen except Xingjiashe. Only race 2 and race 4 were detected around Xingjiashe, covered 810 km2. SCN populations with 3 samples were likely to preferentially evolve from subspecies 4 to subspecies X12. The results showed that strong and effective measures should be taken in Gujiao city to slow down the virulence escalation of SCN and the spread of X12 species.

Key words: soybean, soybean cyst nematode, X12, survey, physiological race

图1

古交市大豆胞囊线虫新小种X12分布图(2019-2020年调查) N: 受大豆胞囊线虫感染但未鉴定出结果的样本; R2: 2号生理小种; R4: 4号生理小种; X12: X12 新小种。红实心三角形1代表最初发现X12小种的地点; 红实心三角形2代表本次调查新发现X12小种的地点; 较大的蓝实心圆形代表有可能会优先由4号小种进化为X12小种的地点。"

表1

采集自古交市26份样本的生理小种类型鉴定(2019-2020年)"

小种类型a
Race a (%)
编号
Number
Lee上胞囊b
Cysts on Lee b
胞囊指数Female index
Pickett Peking PI88788 (MU) PI90763 ZDD2315
2号小种(57.7)
Race 2 (57.7)
1 95 98.9 270.7 85.1 1.9 1.1
4 698 94.8 83.3 26.1 0.5 4.1
6 543 38.9 30.6 33.4 6.4 0.1
8 170 39.6 80.3 91.2 1.4 0.4
9 217 48.0 22.8 26.1 5.1 1.2
11 129 37.7 28.0 84.6 2.7 1.8
12 284 61.7 100.4 58.9 0.5 1.3
16 242 81.1 59.9 60.6 0.2 0.1
18 379 80.9 75.5 31.2 2.6 1.2
19 80 102.4 83.9 63.6 4.2 1.8
20 64 66.7 42.3 40.4 1.3 0.4
24 509 86.4 63.8 98.1 0.4 0.2
25 404 100.7 87.3 69.0 4.5 0.2
29 336 58.7 102.5 32.6 1.0 0.2
31 547 68.3 77.8 87.4 3.7 0.1
X12小种c (7.7)
Race X12 c (7.7)
1 438 67.6 73.7 36.0 38.0 32.4
2 520 93.3 79.8 84.7 94.1 10.7
小种类型a
Race a (%)
编号
Number
Lee上胞囊b
Cysts on Lee b
胞囊指数Female index
Pickett Peking PI88788 (MU) PI90763 ZDD2315
潜在的X12小种(11.5)
Potential race X12 (11.5)
5 258.6 173.9 86.1 69.8 39.0 7.6
21 479 102.7 80.5 61.0 13.6 9.6
27 249 69.3 62.9 32.3 12.2 6.4
4号小种(23.1)
Race 4 (23.1)
10 298 91.6 61.5 55.6 15.2 1.1
14 550 37.2 69.5 73.3 17.7 0.4
17 706 86.2 77.2 82.1 72.7 0.8
26 815 84.7 82.9 55.2 12.2 0.1
28 251 53.3 147.5 75.6 16.0 1.8
33 633 91.5 90.8 73.5 34.7 0.4

表2

利用HG type模式鉴定采集自古交市不同生理小种类型的样本(2019-2020年)"

项目
Item
寄主
Host
编号 Number
16 14 21 30
Lee上胞囊数
Number of cysts on Lee
482.7 156.0 787.0 340.7
胞囊指数
Female index
Peking 45.5 69.7 65.9 79.8
PI88788 53.0 105.6 61.2 76.1
PI90763 3.5 18.2 14.4 12.7
PI437654 2.3 3.6 0.8 105.0
PI209332 15.8 50.3 14.4 87.4
PI89772 44.7 102.4 21.3 141.1
PI548316 70.0 81.8 12.5 161.7
小种类型
Race
Race model Race 2 Race 4 Potential X12 Race X12
HG type 1.2.5.6.7 1.2.3.5.6.7 1.2.3.5.6.7 1.2.3.4.5.6.7
[1] Allen T W, Bradley C A, Sisson A J, Byamukama E, Chilvers M I, Coker C M, Collins A A, Damicone J P, Dorrance A E, Dufault N S, Esker P D, Faske T R, Giesler L J, Grybauskas A P, Hershman D E, Hollier C A, Isakeit T, Jardine D J, Kelly H M, Kemerait R C, Kleczewski N M, Koenning S R, Kurle J E, Malvick D K, Markell S G, Mehl H L, Mueller D S, Mueller J D, Mulrooney R P, Nelson B D, Newman M A, Osbome L, Overstreet C, Padgett G B, Phipps P M, Price P P, Sikora E J, Smith D L, Spurlock T N, Tande C A, Tenuta A U, Wise K A, Wrather J A. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog, 2017,18:19-27.
[2] Koenning S R, Wrather J A. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009. Plant Health Prog, 2010. doi: org/10.1094/PHP-2010- 1122-01-RS.
pmid: 10275108
[3] Lian Y, Guo J Q, Li H C, Wu Y K, Wei H, Wang J S, Li J Y, Lu W G. A new race (X12) of soybean cyst nematode in China. J Nematol, 2017,49:321-326.
[4] 练云, 王金社, 李海朝, 魏荷, 李金英, 武永康, 雷晨芳, 张辉, 王树峰, 郭建秋, 李月霞, 李志辉, 靳巧玲, 徐淑霞, 张志民, 杨采云, 于会勇, 耿臻, 舒文涛, 卢为国. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查. 作物学报, 2016,42:1479-1486.
Lian Y, Wang J S, Li H C, Wei H, Li J Y, Wu Y K, Lei C F, Zhang H, Wang S F, Guo J Q, Li Y X, Li Z H, Jin Q L, Xu S X, Zhang Z M, Yang C Y, Yu H Y, Geng Z, Shu W T, Lu W G. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers valley. Acta Agron Sin, 2016,42:1479-1486 (in Chinese with English abstract).
[5] Riggs R D, Schmitt D P. Complete characterization of the race scheme for Heterodera glycines. J Nematol, 1988,20:392-395.
pmid: 19290228
[6] Niblack T L, Arelli P R, Noel G R, Opperman C H, Orf J H, Schmitt D P, Shannon J G, Tylka G L. A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol, 2002,34:279-288.
pmid: 19265945
[7] 林汉明, 常汝镇, 邵桂花, 刘忠堂. 中国大豆耐逆研究. 北京: 中国农业出版社, 2009. pp 155-158.
Lin H M, Chang R Z, Shao G H, Liu Z T. Research on Tolerance to Stresses in Chinese Soybean. Beijing: China Agriculture Press, 2009. pp 155-158(in Chinese).
[8] 大豆种质抗胞囊线虫鉴定协作组. 大豆种质资源对大豆胞囊线虫1、3和4号生理小种的抗性鉴定. 大豆科学, 1993,12(2):91-99.
Identification cooperation group of soybean germplasms with resistance to soybean cyst nematode. Resistance evaluation of soybean germplasm to race1, 3 and 4 of soybean cyst nematode (Heterodera glycines). Soybean Sci, 1993,12(2):91-99 (in Chinese with English abstract).
[9] Kadama S, Vunoga T D, Qiua D, Meinhardt C G, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo A M, Shannon J G, Nguyen H T. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci, 2016,242:342-350.
pmid: 26566850
[10] 卢为国, 盖钧镒, 李卫东. 黄淮地区大豆胞囊线虫生理小种的抽样调查与研究. 中国农业科学, 2006,39:306-312.
Lu W G, Gai J Y, Li W D. Sampling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai valleys. Sci Agric Sin, 2006,39:306-312 (in Chinese with English abstract)
[11] Mitchum M G, Wrather J A, Heinz R D, Shannon J G, Danekas G. Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis, 2007,91:1473-1476.
doi: 10.1094/PDIS-91-11-1473 pmid: 30780744
[12] Howland A, Monnig N, Mathesius J, Nathan M, Mitchum M G. Survey of Heterodera glycines population densities and virulence phenotypes during 2015-2016 in Missouri. Plant Dis, 2018,102:2407-2410.
[13] Niblack T L, Colgrove K B, Colgrove A C. Soybean cyst nematode in Illinois from 1990 to 2006: shift in virulence phenotype of field populations. J Nematol, 2006,38:285.
[14] Tylka G L, Marrett C C. Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954-2014. Plant Health Prog, 2014,15:13-15.
[15] Mitchum M G. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology, 2016,106:1444-1450.
[16] Peng D L, Peng H, Wu D Q, Huang W, Cui J K. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China. Plant Dis, 2015,100:229.
[17] Wang D, Duan Y X, Wang Y Y, Zhu X F, Chen L J, Liu X Y. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi provinces, China. Plant Dis, 2015,99:893.
[18] 王金社, 卢为国, 李金英, 练云, 魏荷, 李海朝, 雷晨芳. 专利号: 2014SR060158, 植物病虫害表型数据采集系统. 中国, 2014.
Wang J S, Lu W G, Li J Y, Lian Y, Wei H, Li H C, Lei C F. The data acquisition system on the phenotype of plant diseases and insect pests. Patent number: 2014SR060158, China, 2014 (in Chinese).
[19] The R Core Team. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2005. https://cran.r-project.org/doc/manuals/ fullrefman.pdf.
[20] Niblack T L, Colgrove A L, Colgrove K, Bond J P. Shift in virulence of soybean cyst nematode is associated with use of resistance from PI88788. Plant Health Prog, 2008,29. doi: org/10. 1094/PHP-2008-0118-01-RS
[21] Hua C, Li C, Hu Y, Mao Y, You J, Wang M, Chen J, Tian Z, Wang C. Identification of HG types of soybean cyst nematode Heterodera glycines and resistance screening on soybean genotypes in Northeast China. J Nematol, 2018,50:41-50.
pmid: 30335911
[22] Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004,44:1121-1131.
doi: 10.2135/cropsci2004.1121
[23] McCarville M T, Marett C C, Mullaney M P, Gebhart G D, Tylka G L. Increase in soybean cyst nematode virulence and reproduction on resistant soybean varieties in Iowa from 2001 to 2015 and the effects on soybean yields. Plant Health Prog, 2017,18:146-155.
[24] Gardner M, Heinz R, Wang J, Mitchum M G. Genetics and adaptation of soybean cyst nematode to broad spectrum soybean resistance. G3: Genes Genom Genet, 2017,7:835-841.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!