作物学报 ›› 2022, Vol. 48 ›› Issue (1): 76-85.doi: 10.3724/SP.J.1006.2022.04241
许德蓉1,2(), 孙超1,2(), 毕真真1,2, 秦天元1,2, 王一好1,2, 李成举1,2, 范又方1,2, 刘寅笃1,2, 张俊莲1, 白江平1,2,*()
XU De-Rong1,2(), SUN Chao1,2(), BI Zhen-Zhen1,2, QIN Tian-Yuan1,2, WANG Yi-Hao1,2, LI Cheng-Ju1,2, FAN You-Fang1,2, LIU Yin-Du1,2, ZHANG Jun-Lian1, BAI Jiang-Ping1,2,*()
摘要:
为鉴定与马铃薯根系性状相关联的StDRO1基因单核苷酸多态性(single nucleotide polymorphism, SNP)位点, 本研究对110份同源四倍体马铃薯材料StDRO1基因的编码区进行了克隆和测序, 筛选其SNP, 并对StDRO1的SNP位点与马铃薯总根表面积、总根体积和平均根系直径等主要根系性状参数进行了关联分析。结果显示, StDRO1第2外显子上检测到1个SNP位点, 命名为G64C; 第3外显子上检测到10个SNP位点, 分别命名为G152A、A214G、A297G、C314T、A337T、T353C、T560A、C577A、C620A和C625A; 在第4外显子上检测到1个SNP位点, 命名为T793A。关联分析结果表明, StDRO1基因G152A位点在总根体积表现为GA类基因型>GG类基因型(P<0.05); C314T位点在平均根系直径表现为CC类基因型>CT类基因型(P<0.05); A337T位点在总根表面积、鲜重和干重均表现为AT类基因型>AA类基因型(P<0.05), 而在平均根系直径则表现为AA类基因型>AT类基因型(P<0.05); T353C位点在总根表面积、总根体积和鲜重均表现为TC类基因型>TT类基因型(P<0.05); C620A位点在总根体积表现为CA类基因型>CC类基因型(P<0.05); T793A位点在总根表面积、总根体积和鲜重均表现为AT类基因型>TT类基因型(P<0.05)。综上, StDRO1基因的上述6个SNP对马铃薯根系性状有显著影响, 其中A337T、T353C和T793A位点尤为重要。研究结果为后续马铃薯根系构型研究和遗传改良提供了理论参考, 但能否作为马铃薯根系性状遗传标记还需扩大群体样本进一步验证。
[1] | 李彦军, 耿伟, 史超, 许世霖, 孙振营. 马铃薯营养特性及产业发展前景. 中国果菜, 2017, 37(8):16-18. |
Li Y J, Geng W, Shi C, Xu S L, Sun Z Y. Nutritional characteristics and industrial development prospect of potato. China Fruit Veget, 2017, 37(8):16-18 (in Chinese with English abstract). | |
[2] | Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends Plant Sci, 2014, 19:419-425. |
[3] | 李秉钧, 颜耀, 吴文景, 吴鹏飞, 邹显花, 马祥庆. 环境因子对植物根系及其构型的影响研究进展. 亚热带水土保持, 2019, 31(3):41-45. |
Li B J, Yan Y, Wu W J, Wu P F, Zou X H, Ma X Q. Study progress on the impact of environment factor to the plant root system and configuration. Subtrop Soil Water Conserv, 2019, 31(3):41-45 (in Chinese with English abstract). | |
[4] | Henry A, Dixit S, Mandal N P, Anantha M S, Torres R, Kumar A. Grain yield and physiological traits of rice lines with the drought yield QTL qDTY12.1 showed different responses to drought and soil characteristics in upland environments. Funct Plant Biol, 2014, 41:1066-1077. |
[5] | Meijon M, Satbhai S B, Tsuchimatsu T, Busch W. Genome-wide association study using cellular traits identifies a new regulator of root development inArabidopsis. Nat Genet, 2014, 46:77-81. |
[6] | Porter G A, Bradbury W B, Sisson J A, Opena G B, McBurnie J C. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron J, 1999, 91:416-425. |
[7] | Fabeiro C, de Santa Olalla F M, de Juan J A. Yield and size of deficit irrigated potatoes. Agric Water Manage, 2001, 48:255-266. |
[8] | Yuan B Z, Nishiyama S, Kang Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63:153-167. |
[9] | Uga Y, Okuno K, Yano M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot, 2011, 62:2485-2494. |
[10] | Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45:1097-1102. |
[11] | Guseman J M, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J, 2017, 89:1093-1105. |
[12] | Waite J M, Collum T D, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. Plant Mol Biol, 2020, 103:197-210. |
[13] | 梁文君. 马铃薯StDRO1基因的功能验证. 甘肃农业大学硕士学位论文,甘肃兰州, 2020. |
Liang W J. Functional Verification of Potato StDRO1 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2020 (in Chinese with English abstract). | |
[14] | Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014, 80:283-383. |
[15] | Toubiana D, Cabrera R, Salas E, Maccera C, Franco Dos Santos G, Cevallos D, Lindqvist-Kreuze H, Lopez J M, Maruenda H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. Plant J, 2020, 103:2193-2210. |
[16] | Deblonde P M K, Ledent J F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron, 2001, 14:31-41. |
[17] | Ashraf A, Rehman O U, Muzammil S, Lon J, Naz A A, Rasool F, Ali G M, Zafar Y, Khan M R. Evolution of deeper rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One, 2019, 14:e0214145. |
[18] | Omori F, Mano Y. QTL mapping of root angle in F2 populations from maize B73× teosinte Zea luxurians. Plant Root, 2007, 1:57-65. |
[19] | 蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019. |
蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019. | |
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract). | |
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract). | |
[20] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786. |
秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786. | |
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract). | |
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract). | |
[21] | 梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458. |
梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458. | |
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract). | |
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract). | |
[22] | Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12. |
Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12. | |
[23] | Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355. |
Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355. | |
[24] | Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677. |
Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677. | |
[25] | Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410. |
Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410. | |
[26] | Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898. |
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898. | |
[27] | Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279. |
Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279. | |
[28] | Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999. |
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999. | |
[29] | Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322. |
Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322. | |
[30] | Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630. |
Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[4] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[8] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[9] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[10] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[11] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[12] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[13] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[14] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[15] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
|