欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 792-797.doi: 10.3724/SP.J.1006.2019.84104

• 研究简报 • 上一篇    下一篇

强闪光抑制棉花叶片光系统II活性和热耗散

吴含玉1,3,肖飞1,张亚黎2,姜闯道3,*(),张旺锋2,*()   

  1. 1 石河子大学生命科学学院, 新疆石河子 832003
    2 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子832003
    3 中国科学院植物研究所 / 北方资源植物重点实验室, 北京100093
  • 收稿日期:2018-07-28 接受日期:2018-12-24 出版日期:2019-05-12 发布日期:2019-02-15
  • 通讯作者: 姜闯道,张旺锋 E-mail:jcdao@ibcas.ac.cn;wfzhang65@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(U1803234)

Repetitive intense flashes inhibit photosystem II activity and thermal dissipation in cotton leaves

Han-Yu WU1,3,Fei XIAO1,Ya-Li ZHANG2,Chuang-Dao JIANG3,*(),Wang-Feng ZHANG2,*()   

  1. 1 College of Life Science, Shihezi University, Shihezi 832003, Xinjiang, China
    2 College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    3 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2018-07-28 Accepted:2018-12-24 Online:2019-05-12 Published:2019-02-15
  • Contact: Chuang-Dao JIANG,Wang-Feng ZHANG E-mail:jcdao@ibcas.ac.cn;wfzhang65@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(U1803234)

摘要:

除持续强光导致光合作用效率降低外, 强闪光也能够影响光合功能, 但规律和机制尚不清楚。为研究强闪光对喜光植物棉花叶片光合功能的影响, 选用陆地棉(Gossypium hirsutum L.)品种新陆早45号为材料, 于强闪光处理(20,000 μmol m -2 s -1, 300 ms, 间隔10 s, 处理时间持续30 min)前后分别测定叶绿素荧光、P700和气体交换。结果表明, 强闪光处理后不仅有活性的PSI (光系统I)反应中心含量下降, 同时PSII (光系统II)电子传递活性也受到限制。与对照相比, 强闪光处理后PSI的ΦND (PSI供体侧限制引起的非光化学量子产量)下降, ΦNA (PSI受体侧限制引起的非光化学量子产量)增加, 暗示强闪光能够抑制PSI受体侧电子传递活性。强闪光处理不仅使PSII的实际量子产量明显下降, 而且非光化学猝灭和ΦNPQ (PSII调节性能量耗散的量子产量)也降低; 但是, ΦNO (PSII非调节性能量耗散的量子产量)明显增加, 表明强闪光导致热耗散降低和PSII失活。此外, 强闪光处理后光合速率和气孔导度均降低, 但细胞间隙CO2浓度增加, 证明强闪光处理后同化能力的降低不是气孔限制导致的。因此, 本研究认为强闪光处理不仅抑制PSI活性, 而且导致PSII失活和可调节性热耗散下降; 光合电子传递活性的下降可能是强闪光下光合速率降低的重要原因。

关键词: 棉花, 强闪光, 光抑制, 光合作用, 电子传递

Abstract:

Not only continuous high light results in the decrease of photosynthetic efficiency, but also intense flashes may affect the photosynthetic function. In this study, cotton (Gossypium hirsutum L.) cultivar Xinluzao 45 was used to investigate the effects of repetitive intense flash treatment (leaves exposed to 20,000 μmol m -2 s -1 for 300 ms, with interval time of 10 s, and the whole treatment duration was 30 min) on two photosystems and photosynthetic function of cotton leaves. Chlorophyll fluorescence, P700 and gas exchange were measured before and after repetitive intense flash treatment, respectively. The content of active PSI (photosystem I) reaction center and the electron transfer activity of PSII (photosystem II) all decreased after repetitive intense flash treatment which reflected by the significant increase in J and K phases of the fluorescence induction kinetics curves after repetitive intense flash treatment. ΦND (the quantum yield of non-photochemical energy dissipation due to donor side limitation) of PSI decreased while ΦNA (the quantum yield of non-photochemical energy dissipation due to acceptor side limitation) increased, indicating that acceptor side of PSI was primarily inhibited by repetitive intense flashes. Repetitive intense flash treatment induced a distinct decrease in the quantum yield of PSII in cotton leaves under actinic light. Moreover, ΦNPQ (the quantum yield of regulated energy dissipation) of PSII decreased significantly after repetitive intense flash treatment. However, ΦNO (the quantum yield of non-regulated energy dissipation) increased considerably, demonstrating that the repetitive intense flashes caused PSII photoinhibition. The photosynthetic rate and the stomatal conductance decreased while the intercellular CO2 concentration increased after repetitive intense flash treatment, indicating that the reduction of carbon assimilation induced by repetitive intense flash treatment is not limited by stomata. Therefore, we believe that the repetitive intense flash treatment not only induces inactivation of PSI, but also leads to PSII photoinhibition and the decrease of thermal dissipation. The suppression of photosynthetic electron transport activity may play important role in the decrease of photosynthetic rate after repetitive intense flash treatment.

Key words: cotton, repetitive intense flashs, photoinhibition, photosynthesis, electron transport

图1

强闪光处理对棉花叶片P700氧化还原曲线(A)和P700最大氧化状态(Pm)(B)的影响"

图2

强闪光处理对棉花叶片PSII叶绿素快速诱导动力学曲线(A)、PSII的最大量子产量Fv/Fm (B)、VJ (C)和WK的影响"

图3

强闪光处理对棉花叶片PSI氧化还原状态的影响 A: 光下PSI量子产量(ΦPSI); B: 光下PSI被氧化的比例(ΦND), 是PSI由于供体侧限制引起的PSI非光化学量子产量; C: 光下PSI未发生氧化的比例(ΦNA), 是由于受体侧限制引起的PSI非光化学量子产量。"

图4

强闪光对棉花叶片荧光猝灭动力学的影响 A: PSII实际光化学效率(ΦPSII); B: 非光化学淬灭(NPQ); C: PSII调节性能量耗散的量子产量(ΦNPQ); D: PSII非调节性能量耗散的量子产量(ΦNO)。"

图5

强闪光处理对棉花叶片光合作用光响应曲线的影响 A: 光合速率(Pn); B: 气孔导度(Gs); C: 细胞间隙二氧化碳浓度(Ci)。"

[1] Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I . Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007,1767:414-421.
doi: 10.1016/j.bbabio.2006.11.019
[2] David J K, Zalik S . Photosystem II activity, plastoquinone A levels, and fluorescence characterization of a virescens mutant of barley. Plant Physiol, 1982,70:1026-1031.
doi: 10.1104/pp.70.4.1026
[3] Takahashi S, Murata N . Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta, 2005,1780:352-361.
[4] Nishiyama Y, Allakhverdiev S, Murata N . Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res, 2005,84:1-7.
doi: 10.1007/s11120-004-6434-0
[5] Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F . Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012,235:819-828.
doi: 10.1007/s00425-011-1544-3
[6] Terashima L, Funayama S, Sonoike K . The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 1994,193:300-306.
[7] Zhang S P, Scheller H V . Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004,45:1595-1602.
doi: 10.1093/pcp/pch180
[8] Huang W, Zhang S B, Cao K F . The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynth Res, 2010,103:175-182.
doi: 10.1007/s11120-010-9539-7
[9] Tikkanen M, Mekala N R, Aro E M . Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim Biophys Acta, 2014,1837:210-215.
doi: 10.1016/j.bbabio.2013.10.001
[10] Tikkanen M, Grebe S . Switching off photoprotection of photosystem I: a novel tool for gradual PSI photoinhibition. Physiol Plant, 2018,162:156-161.
doi: 10.1111/ppl.2018.162.issue-2
[11] Li X G, Wang X M, Meng Q W, Zou Q . Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica, 2004,42:257-262.
doi: 10.1023/B:PHOT.0000040598.48732.af
[12] Zhang Z S, Jia Y J, Gao H Y, Zhang H T, Li H D, Meng Q W . Characterization of PSI recovery after chilling-induced photoinhibition in cucumber ( Cucumis stativus L.) leaves. Planta, 2011,234:883-889.
[13] Sejima T, Takagi D, Fukayama H, Makino A, Miyake C . Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061
[14] Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev S I . Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res, 2015,126:449-463.
doi: 10.1007/s11120-015-0121-1
[15] Suzuki K, Ohmori Y, Ratel E . High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. Plant Cell Physiol, 2011,52:1697-1707.
doi: 10.1093/pcp/pcr104
[16] Kramer D M, Johnson G, Kiirats O, Edwards G E . New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79:209-218.
[17] Genty B, Briantais J M, Bake N R . The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989,1:87-92.
[18] Pfündel E, Klughammer C, Schreiber U . Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes, 2008,1:21-24.
[19] Schreiber U, Klughammer C . New accessory for the DUAL- PAM-100: the P515/535 module and examples of its application. PAM Appl Notes, 2008,1:1-10.
[20] Klughammer C, Schreiber U . Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Notes, 2008,1:27-35.
[21] Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E M . PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell, 2012,24:2934-2948.
[22] Sonoike K, Terashima I . Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994,194:287-293.
[23] Sonoike K . Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996,37:239-247.
doi: 10.1093/oxfordjournals.pcp.a028938
[24] Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C . Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant, 2017,161:56-74.
doi: 10.1111/ppl.2017.161.issue-1
[25] Liu Y F, Qi M F, Li T L . Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012,196:8-17.
doi: 10.1016/j.plantsci.2012.07.005
[26] Sato R, Kono M, Harada K, Ohta H, Takaichi S, Masuda S . FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, conserved in oxygenic phototrophs, regulates H + homeostasis and non-photochemical quenching in chloroplasts . Plant Cell Physiol, 2017,58:1622-1630.
doi: 10.1093/pcp/pcx110
[1] 吴含玉,张雅君,张旺锋,王克如,李少昆,姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2): 248-255.
[2] 依尔夏提•阿不来提,买买提•沙吾提,白灯莎•买买提艾力,安申群,马春玥. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90.
[3] 卢合全, 祁杰, 代建龙, 张艳军, 孔祥强, 李振怀, 李维江, 徐士振, 唐薇, 张冬梅, 罗振, 辛承松, 孙学振, 董合忠. 棉花对初蕾期物理伤害的调节补偿效应[J]. 作物学报, 2019, 45(06): 904-911.
[4] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[5] 安静,黎芳,周春江,田晓莉,李召虎. 增效缩节安化学封顶对棉花主茎生长的影响及其相关机制[J]. 作物学报, 2018, 44(12): 1837-1843.
[6] 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226.
[7] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立[J]. 作物学报, 2018, 44(02): 227-235.
[8] 王欣怡,艾先涛,王俊铎,梁亚军,龚照龙,郑巨云,郭江平,买买提.莫明,李雪源. 利用SSR快速鉴定棉花品种真实性和纯度[J]. 作物学报, 2017, 43(10): 1565-1572.
[9] 张巧玉,张睿,刘朝辉,田晓莉. 缺钾诱导早衰条件下应用嫁接技术研究根-冠互作对棉花下胚轴解剖结构的影响[J]. 作物学报, 2017, 43(10): 1527-1535.
[10] 肖飞,杨延龙,王娅婷,马慧,张旺锋. 棉花花铃期低温对叶片PSI和PSII光抑制的影响[J]. 作物学报, 2017, 43(09): 1401-1409.
[11] 王娟,董承光,刘丽,孔宪辉,王旭文,余渝. 棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘[J]. 作物学报, 2017, 43(07): 954-966.
[12] 秦都林,王双磊,刘艳慧,聂军军,赵娜,毛丽丽,宋宪亮,孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响[J]. 作物学报, 2017, 43(07): 1030-1042.
[13] 胡文冉,范玲,李晓荣,谢丽霞,杨洋,李波,陈方圆. 棉花纤维中木质素的相对分子量[J]. 作物学报, 2017, 43(06): 940-944.
[14] 胡海燕,刘迪秋,李允静,李阳,涂礼莉*. 一个棉花纤维伸长期优势表达启动子pGhFLA1的克隆与鉴定[J]. 作物学报, 2017, 43(06): 849-854.
[15] 王树林,祁虹,王燕,张谦,冯国艺,林永增. 耕层重构对连作棉田土壤理化性状及棉花生长发育的影响[J]. 作物学报, 2017, 43(05): 741-753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尹静;王广金;张宏纪;孙岩;刁艳玲;黄景华;郭强;肖佳雷;马凤鸣;孙光祖. 小麦突变体D51抗秆锈性遗传分析及其抗性基因SSR标记[J]. 作物学报, 2007, 33(08): 1262 -1266 .
[2] 张立桢;曹卫星;张思平;周治国. 棉花蕾铃生长发育和脱落的模拟研究[J]. 作物学报, 2005, 31(01): 70 -76 .
[3] 倪金柱;汤邦根;高培良. 棉田氮肥施用技术及其增产作用初报[J]. 作物学报, 1962, 1(04): 387 -398 .
[4] 旦巴;涂金星;胡书银;何余堂;王建林;陈宝元;栾运芳;尼玛卓玛;孟霞;卓嘎. 西藏油菜种质资源的RAPD分子标记分析[J]. 作物学报, 2003, 29(01): 1 -7 .
[5] 焦健;高庆荣;张爱民;郝媛媛;王大伟;王霖;邱新民. 不同小麦雄性不育类型光合、生理参数日变化的研究[J]. 作物学报, 2007, 33(08): 1267 -1271 .
[6] 乔保建;朱晓彪;王盈盈;洪德林. 不同生长环境下水稻穗抽出度3个相关性状QTL定位研究[J]. 作物学报, 2008, 34(03): 389 -396 .
[7] 王芳;段迪;段培;王宝山. 不同耐盐性小麦胚芽鞘伸长对NaCl胁迫的响应[J]. 作物学报, 2007, 33(12): 2053 -2058 .
[8] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[9] 戴忠民;尹燕枰;张敏;李文阳;闫素辉;蔡瑞国;王振林. 旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征[J]. 作物学报, 2008, 34(05): 795 -802 .
[10] 周瑞阳;赵合明;刘恒蔚;徐俐. 红麻花柱外露长度的光温效应[J]. 作物学报, 2005, 31(02): 262 -263 .