欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 792-797.doi: 10.3724/SP.J.1006.2019.84104

• 研究简报 • 上一篇    下一篇

强闪光抑制棉花叶片光系统II活性和热耗散

吴含玉1,3,肖飞1,张亚黎2,姜闯道3,*(),张旺锋2,*()   

  1. 1 石河子大学生命科学学院, 新疆石河子 832003
    2 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子832003
    3 中国科学院植物研究所 / 北方资源植物重点实验室, 北京100093
  • 收稿日期:2018-07-28 接受日期:2018-12-24 出版日期:2019-05-12 网络出版日期:2019-02-15
  • 通讯作者: 姜闯道,张旺锋
  • 基金资助:
    本研究由国家自然科学基金项目(U1803234)

Repetitive intense flashes inhibit photosystem II activity and thermal dissipation in cotton leaves

Han-Yu WU1,3,Fei XIAO1,Ya-Li ZHANG2,Chuang-Dao JIANG3,*(),Wang-Feng ZHANG2,*()   

  1. 1 College of Life Science, Shihezi University, Shihezi 832003, Xinjiang, China
    2 College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    3 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2018-07-28 Accepted:2018-12-24 Published:2019-05-12 Published online:2019-02-15
  • Contact: Chuang-Dao JIANG,Wang-Feng ZHANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(U1803234)

摘要:

除持续强光导致光合作用效率降低外, 强闪光也能够影响光合功能, 但规律和机制尚不清楚。为研究强闪光对喜光植物棉花叶片光合功能的影响, 选用陆地棉(Gossypium hirsutum L.)品种新陆早45号为材料, 于强闪光处理(20,000 μmol m -2 s -1, 300 ms, 间隔10 s, 处理时间持续30 min)前后分别测定叶绿素荧光、P700和气体交换。结果表明, 强闪光处理后不仅有活性的PSI (光系统I)反应中心含量下降, 同时PSII (光系统II)电子传递活性也受到限制。与对照相比, 强闪光处理后PSI的ΦND (PSI供体侧限制引起的非光化学量子产量)下降, ΦNA (PSI受体侧限制引起的非光化学量子产量)增加, 暗示强闪光能够抑制PSI受体侧电子传递活性。强闪光处理不仅使PSII的实际量子产量明显下降, 而且非光化学猝灭和ΦNPQ (PSII调节性能量耗散的量子产量)也降低; 但是, ΦNO (PSII非调节性能量耗散的量子产量)明显增加, 表明强闪光导致热耗散降低和PSII失活。此外, 强闪光处理后光合速率和气孔导度均降低, 但细胞间隙CO2浓度增加, 证明强闪光处理后同化能力的降低不是气孔限制导致的。因此, 本研究认为强闪光处理不仅抑制PSI活性, 而且导致PSII失活和可调节性热耗散下降; 光合电子传递活性的下降可能是强闪光下光合速率降低的重要原因。

关键词: 棉花, 强闪光, 光抑制, 光合作用, 电子传递

Abstract:

Not only continuous high light results in the decrease of photosynthetic efficiency, but also intense flashes may affect the photosynthetic function. In this study, cotton (Gossypium hirsutum L.) cultivar Xinluzao 45 was used to investigate the effects of repetitive intense flash treatment (leaves exposed to 20,000 μmol m -2 s -1 for 300 ms, with interval time of 10 s, and the whole treatment duration was 30 min) on two photosystems and photosynthetic function of cotton leaves. Chlorophyll fluorescence, P700 and gas exchange were measured before and after repetitive intense flash treatment, respectively. The content of active PSI (photosystem I) reaction center and the electron transfer activity of PSII (photosystem II) all decreased after repetitive intense flash treatment which reflected by the significant increase in J and K phases of the fluorescence induction kinetics curves after repetitive intense flash treatment. ΦND (the quantum yield of non-photochemical energy dissipation due to donor side limitation) of PSI decreased while ΦNA (the quantum yield of non-photochemical energy dissipation due to acceptor side limitation) increased, indicating that acceptor side of PSI was primarily inhibited by repetitive intense flashes. Repetitive intense flash treatment induced a distinct decrease in the quantum yield of PSII in cotton leaves under actinic light. Moreover, ΦNPQ (the quantum yield of regulated energy dissipation) of PSII decreased significantly after repetitive intense flash treatment. However, ΦNO (the quantum yield of non-regulated energy dissipation) increased considerably, demonstrating that the repetitive intense flashes caused PSII photoinhibition. The photosynthetic rate and the stomatal conductance decreased while the intercellular CO2 concentration increased after repetitive intense flash treatment, indicating that the reduction of carbon assimilation induced by repetitive intense flash treatment is not limited by stomata. Therefore, we believe that the repetitive intense flash treatment not only induces inactivation of PSI, but also leads to PSII photoinhibition and the decrease of thermal dissipation. The suppression of photosynthetic electron transport activity may play important role in the decrease of photosynthetic rate after repetitive intense flash treatment.

Key words: cotton, repetitive intense flashs, photoinhibition, photosynthesis, electron transport

图1

强闪光处理对棉花叶片P700氧化还原曲线(A)和P700最大氧化状态(Pm)(B)的影响"

图2

强闪光处理对棉花叶片PSII叶绿素快速诱导动力学曲线(A)、PSII的最大量子产量Fv/Fm (B)、VJ (C)和WK的影响"

图3

强闪光处理对棉花叶片PSI氧化还原状态的影响 A: 光下PSI量子产量(ΦPSI); B: 光下PSI被氧化的比例(ΦND), 是PSI由于供体侧限制引起的PSI非光化学量子产量; C: 光下PSI未发生氧化的比例(ΦNA), 是由于受体侧限制引起的PSI非光化学量子产量。"

图4

强闪光对棉花叶片荧光猝灭动力学的影响 A: PSII实际光化学效率(ΦPSII); B: 非光化学淬灭(NPQ); C: PSII调节性能量耗散的量子产量(ΦNPQ); D: PSII非调节性能量耗散的量子产量(ΦNO)。"

图5

强闪光处理对棉花叶片光合作用光响应曲线的影响 A: 光合速率(Pn); B: 气孔导度(Gs); C: 细胞间隙二氧化碳浓度(Ci)。"

[1] Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I . Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007,1767:414-421.
doi: 10.1016/j.bbabio.2006.11.019
[2] David J K, Zalik S . Photosystem II activity, plastoquinone A levels, and fluorescence characterization of a virescens mutant of barley. Plant Physiol, 1982,70:1026-1031.
doi: 10.1104/pp.70.4.1026
[3] Takahashi S, Murata N . Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta, 2005,1780:352-361.
[4] Nishiyama Y, Allakhverdiev S, Murata N . Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res, 2005,84:1-7.
doi: 10.1007/s11120-004-6434-0
[5] Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F . Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012,235:819-828.
doi: 10.1007/s00425-011-1544-3
[6] Terashima L, Funayama S, Sonoike K . The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 1994,193:300-306.
[7] Zhang S P, Scheller H V . Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004,45:1595-1602.
doi: 10.1093/pcp/pch180
[8] Huang W, Zhang S B, Cao K F . The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynth Res, 2010,103:175-182.
doi: 10.1007/s11120-010-9539-7
[9] Tikkanen M, Mekala N R, Aro E M . Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim Biophys Acta, 2014,1837:210-215.
doi: 10.1016/j.bbabio.2013.10.001
[10] Tikkanen M, Grebe S . Switching off photoprotection of photosystem I: a novel tool for gradual PSI photoinhibition. Physiol Plant, 2018,162:156-161.
doi: 10.1111/ppl.2018.162.issue-2
[11] Li X G, Wang X M, Meng Q W, Zou Q . Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica, 2004,42:257-262.
doi: 10.1023/B:PHOT.0000040598.48732.af
[12] Zhang Z S, Jia Y J, Gao H Y, Zhang H T, Li H D, Meng Q W . Characterization of PSI recovery after chilling-induced photoinhibition in cucumber ( Cucumis stativus L.) leaves. Planta, 2011,234:883-889.
[13] Sejima T, Takagi D, Fukayama H, Makino A, Miyake C . Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061
[14] Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev S I . Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res, 2015,126:449-463.
doi: 10.1007/s11120-015-0121-1
[15] Suzuki K, Ohmori Y, Ratel E . High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. Plant Cell Physiol, 2011,52:1697-1707.
doi: 10.1093/pcp/pcr104
[16] Kramer D M, Johnson G, Kiirats O, Edwards G E . New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79:209-218.
[17] Genty B, Briantais J M, Bake N R . The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989,1:87-92.
[18] Pfündel E, Klughammer C, Schreiber U . Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes, 2008,1:21-24.
[19] Schreiber U, Klughammer C . New accessory for the DUAL- PAM-100: the P515/535 module and examples of its application. PAM Appl Notes, 2008,1:1-10.
[20] Klughammer C, Schreiber U . Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Notes, 2008,1:27-35.
[21] Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E M . PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell, 2012,24:2934-2948.
[22] Sonoike K, Terashima I . Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994,194:287-293.
[23] Sonoike K . Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996,37:239-247.
doi: 10.1093/oxfordjournals.pcp.a028938
[24] Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C . Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant, 2017,161:56-74.
doi: 10.1111/ppl.2017.161.issue-1
[25] Liu Y F, Qi M F, Li T L . Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012,196:8-17.
doi: 10.1016/j.plantsci.2012.07.005
[26] Sato R, Kono M, Harada K, Ohta H, Takaichi S, Masuda S . FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, conserved in oxygenic phototrophs, regulates H + homeostasis and non-photochemical quenching in chloroplasts . Plant Cell Physiol, 2017,58:1622-1630.
doi: 10.1093/pcp/pcx110
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!