欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (10): 1704-1711.doi: 10.3724/SP.J.1006.2008.01704

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆品种RGA分析与疫霉根腐病抗性鉴定

孙石1;赵晋铭1;武晓玲1;郭娜1;王源超2;唐卿华2;盖钧镒1;邢邯1,*   

  1. 1 南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室; 2 南京农业大学农业部病虫监测与治理重点开放实验室, 江苏南京 210095
  • 收稿日期:2008-01-17 修回日期:1900-01-01 出版日期:2008-10-12 网络出版日期:2008-10-12
  • 通讯作者: 邢邯

Resistance Identification and Genetic Diversity among Soybean Cultivars Based on Resistance Gene Analogue

SUN Shi1,ZHAO Jin-Ming1,WU Xiao-Ling1,GUO Na1,WANG Yuan-Chao2,TANG Qing-Hua2,GAI Jun-Yi1,XING Han1*   

  1. 1 Soybean Research Institute, Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory for Crop Ge-netics and Germplasm Enhancement; 2 Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nan-jing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2008-01-17 Revised:1900-01-01 Published:2008-10-12 Published online:2008-10-12
  • Contact: XING Han

摘要: 采用7个具有不同毒性基因的大豆疫霉菌株, 对黄淮地区48个优良大豆种质资源进行了苗期接种鉴定, 筛选出一批具有不同抗性的优异抗源, 说明黄淮地区蕴藏着丰富的大豆抗病资源。以相似系数0.682聚类, 48个大豆品种可以分成8类。同时, 根据抗病基因在保守区域序列同源性的原理, 利用RGA-PCR方法对48个品种的遗传多样性进行分析, 从48个大豆品种的抗病基因同源序列中共扩增出53条谱带, 各品种之间谱带较清晰且呈现明显的多态性, 以相似系数0.746聚类, 48个大豆品种可以分成7类。尽管抗性表型和RGA聚类的类与类之间没有一一对应关系, 但抗谱广的品种, 能较好地聚在一类, 如丰收黄、科丰36、即墨油豆等。因此, 综合利用抗性表型和RGA分析可以为大豆疫霉根腐病抗性基因鉴定、品种的培育和合理布局提供一定的理论依据。

关键词: 大豆, 抗病基因同源序列分析, 多态性, 抗性鉴定

Abstract: Phytophthora root rot caused by Phytophthora sojae is a destructive disease for soybean [Glycine max (L.) Merr.] in soybean production regions of the world. Utilization of resistant varieties is the most economical and environmentally safe method for controlling this disease. A total of 48 soybean cultivars, which mainly used in Huang-Huai Valley, were analyzed to study their resistance to P. sojae by identifying seedlings with 7 stains of P. sojae. The resistance to P. sojae varied among different cultivars, which were divided into 8 groups at 0.682 similarity coefficient. The results showed that there exist the rich resistant soybean resources to P. sojae in Huang-Huai Valley. Most known plant disease-resistance (R) genes include nucleotide binding site (NBS) or leucine-rich repeats (LRRs) and serine/threonine protein kinase (STK) in their encoded products domains. Two primers, XLRRfor/XLRRrev and Pto-kin1/Pto-kin2, were designed on the loci of these conserved domains. By polymerase chain reaction (PCR) and denatured polyacrylamide-gel electrophoresis techniques, disease resistance gene analogues (RGA) amplified on 48 soybean materials. The RGA analysis of 48 cultivars produced 53 amplification bands, 39 of them (73.6 %) showed polymorphic, and they were divided into 7 groups at 0.746 similarity coefficient. Although there was no parallelism relationship in groups be-tween two different types of the clustering, the cultivars with broad resistance spectrum, such as Fengshouhuang, Kefeng 36, and Jimoyoudou could be clustered into the same group. The result indicated RGAP (resistance gene analog polymorphism) technique, combining the resistant spectrum, provides a useful and efficient way to improve the efficiency of parent selection in soybean breeding and to accelerate the process of developing soybean cultivars with resistance.

Key words: Soybean, Resistance gene analogue (RGA), Polymorphism, Resistance identification

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!