欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2077-2084.doi: 10.3724/SP.J.1006.2008.02077

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芝麻EST-SSR标记的开发和初步研究

魏利斌1;张海洋2,*;郑永战2;郭旺珍1,*;张天真1   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095; 2河南省农作物新品种重点实验室,河南郑州450002
  • 收稿日期:2008-05-04 修回日期:2008-07-15 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 郭旺珍
  • 基金资助:

    国家自然科学基金项目(30471104);国家重大基础研究前期研究专项(2003CCAO0700);教育部111工程项目(B08025)

Development and Utilization of EST-derived Microsatellites in Sesame (Sesamum indicum L.)

WEI Li-Bin1,ZHANG Hai-Yang2*,ZHENG Yong-Zhan2,GUO Wang-Zhen1*,ZHANG Tian-Zhen1   

  1. 1 National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Henan Key Laboratory of Crop Improvement, Zhengzhou 450002, Henan, China
  • Received:2008-05-04 Revised:2008-07-15 Published:2008-12-12 Published online:2008-10-10
  • Contact: GUO Wang-Zhen

摘要:

为了加速分子标记在芝麻研究中的应用,利用网上现有的芝麻EST(expressed sequence tags)数据信息,开展了芝麻EST-SSR功能性标记的开发和利用研究。 在所有的3 328条芝麻EST序列中共确认得到1 785条非冗余EST序列。其中,在含有微卫星重复的148条序列中共检测有155个EST-SSR。非冗余EST序列总长为774.266 kb,平均每4.99 kb含有一个EST-SSR。EST-SSR的分布频率和特征分析表明,以AG/TC为重复基元(motif)的SSR出现最多,占总SSR的37.42%。利用这些序列,设计开发了50对EST-SSR引物,并分别选用36个芝麻、2个棉花、2个大豆和2个油葵进行多态性和通用性研究。其中44对引物在供试芝麻材料中扩增出条带,共产生108个位点,平均每对引物产生2.45个位点,多态信息含量(polymorphism information content, PIC)平均值为0.390。根据遗传相似性系数进行聚类,有26个芝麻材料聚类在两个大的亚类(III和IV)中,聚类结果表明芝麻的基因型与地理来源之间没有必然的联系。此外,分别有2对、3对和4对引物可以在棉花、大豆和油葵中进行通用性扩增。本研究证实这种全新开发的芝麻EST-SSR标记在芝麻遗传多样性分析、遗传图谱构建以及比较基因组等研究方面有广阔的利用前景。

关键词: 芝麻, 表达序列标签 (EST), 简单重复序列(SSR), 多态信息含量(PIC), 遗传多样性

Abstract:

The deficiencies of markers in Sesamum indicum L. that can be used at home and aboard seriously restrict its studies in molecular field. To accelerate the application of molecular markers in sesame, EST-SSR markers development and utilization using publicly available sesame EST data were performed. A total of 1 785 non-redundant EST sets were assembled among the 3 328 identified sesame EST. 148 microsatellites sequences containing 155 EST-SSR were detected from these EST. The total length of the non-redundant EST sequences was 774.266 kb, on average one EST-SSR each 4.99 kb. The distribution characteristics of the EST-SSR markers was analyzed. Among the SSR, dinucleotide AG/TC was the most abundant (occurring 58 times), with frequency of 37.42%. According to these EST sequences containing SSR, 50 primer pairs were designed and tested on 36 sesame accessions, 2 cotton accessions, 2 soybean accessions and 2 oil sunflower accessions to detect polymorphisms and transferability. With 44 EST-SSR, 108 loci were successfully amplified in sesame, with an average of 2.45 loci per primer pair. Of the 44 amplified primer pairs, 27(61.4%) primer pairs revealed polymorphisms in the 36 sesame accessions. The PIC (polymorphism information content) ranged from 0.105 to 0.844, with an average of 0.390. Based on genetic similarity coefficient, the UPGMA dendrogram grouped 26 of 36 accessions in to two sub-clusters (III and IV), but it revealed no association between genotypes and geographical sources. In addition, 2, 3 and 4 SSR markers could be transferred to the PCR of cotton, soybean and oil sunflower respectively. This study effectively proved that EST-SSR from sesame is valuable for genetic analysis, linkage mapping and transferability study among oil plants.

Key words: Sesame (Sesamum indicum L.), EST, SSR, PIC, Genetic diversity

[1]Bhat K V, Babrekar P P, Lakhanpaul S. Study of genetic di-versity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica, 1999, 110: 21-33
[2]Ercan A G, Taskin M, Turgut K. Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Res Crop Evol, 2004, 51: 599-607
[3]Kim D H, Zur G, Danin-Poleg Y, Lee S, Shim K, Kang C, Kashi Y. Genetic relationships of sesame germplasm collec-tion as revealed by inter-simple sequence repeats. Plant Breed, 2002, 121: 259-262
[4]Hernan E L, Petr K. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet, 2006, 7: 10
[5]Dixit A A, Jin M H, Chung J W, Yu J W, Chung H K, Ma K H, Park Y J, Cho E G. Development of polymorphic microsatel-lite markers in sesame (Sesamum indicum L.). Mol Ecol Notes, 2005, 5: 736-738
[6]Yu J K, LaRota M, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genet, 2004, 271: 742-751
[7]Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Graner A. Interspecific transfer-ability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202
[8]Wang C-B(王长彪), Guo W-Z(郭旺珍), Cai C-P(蔡彩平), Zhang T-Z(张天真). Characterization, development and ex-ploitation of EST-derived microsatellites in Gossypium rai-mondii Ulbrich. Chin Sci Bull (科学通报), 2006, 51(3): 316-320(in Chinese)
[9]Jia X P, Shi Y S, Song Y C. Development of EST-SSR in foxtail millet (Setaria italica). Genet Resour Crop Evol, 2007, 54: 233-236
[10]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol, 1999, 11: 122-127
[11]Zhang J (张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of microsatellite markers in cot-ton with PAGE/silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)
[12]Park Y H, Alabady M S, Ulloa M. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an in-terspecific recombinant inbred (RIL) cotton population. Mol Genet Genom, 2005, 274: 428-441
[13]Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Software, 2000
[14]Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull, 1958, 28: 1409-1438
[15]Sneath P H, Sokal R R. Numerical Taxonomy: The Principal and Practice of Numerical Classification. San Francisco: W. H. Freeman and Company, 1973
[16]Weber J L. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics, 1990, 7: 524-530
[17]Cardle L, Ramsay L, Milbourne D. Computational and ex-perimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847-854
[18]Morgante M, Hanafey M, Powell W. Microsatellites are pref-erentially associated with nonrepetitive DNA in plant ge-nomes. Nat Genet, 2002, 30: 194-200
[19]Gao L F, Tang J F, Li H W. Analysis of microsatellites in major crops assessed by computational and experimental ap-proaches. Mol Breed, 2003, 12: 245-261
[20]Xin Y(忻雅), Cui H-R(崔海瑞), Zhang M-L(张明龙), Lim Y-P(林容杓), Choi S-R(崔水莲). Development of EST (ex-pressed sequence tags) marker in Chinese cabbage and its transferability to rapeseed. Hereditas (遗传), 2005, 27(3): 410-416 (in Chinese with English abstract)
[21]Kantety R V, Rota M L, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510
[22]Sook J, Abbott A, Jesudurai C. Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae EST. Funct Integr Genom, 2005, 5: 136-143
[23]Li H-S(李华盛), Fan S-L(范术丽), Shen F-F(沈法富). Screening of microsatellite markers from cotton EST. Acta Gossypii Sin (棉花学报), 2005, 17(4): 211-216(in Chinese with English abstract)
[24]Lewin B, Genes V. New York: Oxford University Press, 1994
[25]Chabane K, Ablett G A, Cordeiro G M. EST versus genomic derived microsatellite markers for genotyping wild and culti-vated barley. Genet Resour Crop Evol, 2005, 52: 903-909
[26]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsa-tellites derived from genomic libraries and GenBank se-quences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 713-722
[27]Scott K D, Eggler P, Seaton G, Rossetto M, Ablett E M, Lee L S, Henry R J. Analysis of SSR derived from grape EST. Theor Appl Genet, 2000, 100: 723-726
[28]Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) EST cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123
[29]Saha M C, Rouf Mian M A, Eujayl I, John C Z, Wang L J, May G D. Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet, 2004, 109: 783-791
[30]Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymor-phism and genetic diversity in bread wheat. Mol Gen Genet, 2003, 270: 315-323
[31]Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat Rev Genet, 2004, 5: 435-445
[32]Sharopova N, McMullen M D, Schultz L, Schroeder S, San-chez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacoo M. Develop-ment and mapping of SSR markers for maize. Plant Mol Biol, 2002, 48: 463-481
[33]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartin-hour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker poten-tial. Genome Res, 2001, 11: 1441-1452
[34]Yi G, Lee J M, Lee S, Choi D, Kim B D. Exploitation of pepper EST-SSR and an SSR-based linkage map. Theor Appl Genet, 2006, 114: 113-130
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[5] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[6] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[7] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[8] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[9] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[10] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[11] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[12] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[13] 杨文娟,张艳欣,王林海,魏鑫,黎冬华,高媛,刘盼,张秀荣. 一个芝麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2018, 44(7): 1010-1020.
[14] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
[15] 魏中艳, 李慧慧, 李骏, YasirA.Gamar, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证[J]. 作物学报, 2018, 44(03): 315-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!