欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2085-2091.doi: 10.3724/SP.J.1006.2008.02085

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

草棉EST-SSRs的遗传评价

余渝1,2;王志伟1;冯常辉1;张艳欣1;林忠旭1,*;张献龙1   

  1. 1 华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2 新疆农垦科学院棉花所,新疆石河子832000
  • 收稿日期:2008-05-06 修回日期:2008-07-15 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 林忠旭
  • 基金资助:

    国家重点基础研究发展计划(863计划)项目(2006AA10Z153,20060AA00105)

Genetic Evaluation of EST-SSRs Derived from Gossypium herbaceum

YU Yu12,WANG Zhi-Wei1,FENG Chang-Hui1,ZHANG Yan-Xin1,LIN Zhong-Xu1*,ZHANG Xian-Long1   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei; 2 Cotton Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China
  • Received:2008-05-06 Revised:2008-07-15 Published:2008-12-12 Published online:2008-10-10
  • Contact: LIN Zhong-Xu

摘要:

根据GenBank中公布的247条草棉EST序列,搜索SSR并进行引物设计。其中的25条序列含有27个SSR,1~6碱基重复类型都存在,二碱基和三碱基重复的频率较高。为了明确在A、D和AD基因组中的可转移性,依据25条序列共设计25对EST-SSR引物,其中22对引物扩增出清晰可辨的DNA条带,产生92个多态性片段,平均每对引物产生3.64个多态性片段。引物的多态性信息含量(PIC)在0.49~0.91之间,平均为0.81。6对引物在BC1种间作图群体[(鄂棉22 × Pima3-79) ×鄂棉22]中表现多态性,产生7个多态性位点,其中5个为共显性,2个为显性。除HAU230b标记在BC1分离群体中不符合孟德尔式分离比例,其余引物表现正常分离。6个位点被整合到陆地棉和海岛棉种间BC1遗传连锁图谱上的6条染色体:有4个位于A亚基因组的4条染色体上(Chr.6、10、11和12),2个位于D亚基因组的2条染色体(Chr.19和20)。

关键词: 草棉, 表达序列标签, 简单序列重复, 多态性信息含量, 遗传作图

Abstract:

Gossypium herbaceum (A genome) is generally regarded as the most closely relative of the progenitor at subgenomes of allotetraploid cotton, of which the evolution is necessary to study. In order to investigate the contribution of G. herbaceum to the tetraploid genome, EST-SSRs were isolated from 247 EST sequences of G. herbaceum documented in GenBank. Twenty-seven perfect SSRs were identified from twenty-five unique ESTs. These SSRs contained 1–6 bp nucleotide motifs with high frequency for 2-bp and 3-bp nucleotide motifs. A total of 25 primers were developed and 22 of them could amplify 24 cotton accessions including 7 diploids of A genome, 11 diploids of D genome and 6 allotetraploids of AD genome; only HAU217 could specifically amplified A genome and the other 21 primers could amplified both A and D genomes. The number of polymorphic fragments generated by each primer ranged from 1 to 9 with an average of 3.64. The PIC values ranged from 0.49 to 0.91 with an average of 0.81. Among the 25 EST-SSR primers, six primers revealed polymorphism between Emian 22 and Pima 3-79, and yielded seven polymorphic loci (five were codominant and two dominant) in the BC1 [(Emian22 × Pima3-79) × Emian22] population. Only HAU230b showed distorted segregation in the BC1 population. Six polymorphic loci were integrated into six chromosomes of our interspecific BC1 backbone genetic linkage map among which, four loci were mapped on four chromosomes of A sub-genome (Chr. 6, 10, 11, 12), and two loci on two chromosomes of D sub-genome (Chr. 19 and 20).

Key words: Gossypium herbaceum, EST, SSR, Polymorphism information content (PIC), Genetic map

[1]Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea, 1992, 2: 108-165
[2]Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K. Mapping of verticillium wilt re-sistance genes in cotton. Plant Sci, 2005, 168: 1581-1590
[3]Endrizzi J E, Turcotte E L, Kohel R J. Genetics cytology and evolution of Gossypium. Adv Genet, 1985, 23: 271-375
[4]Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215-222
[5]Gupta P K, Balyan H S, Sharma P C, Ramesh B. Microsatel-lites in plants: A new class of molecular markers. Curr Sci, 1996, 70: 45-54
[6]Brown S M, Hopkins M S, Mitchell S E, Senior M L, Wang T Y, Duncan R R, Gonzalez-Candelas F, Kresovich S. Multiple methods for the identification of polymorphic simple se-quence repeats (SSRs) in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet, 1996, 93: 190-198
[7]Scott K D. Microsatellites derived from ESTs and their com-parison with those derived by other methods. In: Henry R J ed. Plant Genotyping: The DNA Fingerprinting of Plants. Wellingford, UK: CAB International, 2001. pp 225-237
[8]Zhang Y X, Lin Z X, Li W, Tu L L, Nie Y C, Zhang X L. Studies of new EST-SSRs derived from Gossypium bar-badense. Chin Sci Bull, 2007, 52: 2522-2531
[9]Saha S, Karaca M, Jenkins J N, Zipf A E, Reddy O U K, Kantety R V. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130: 355-364
[10]Qureshi S N, Saha S, Kantety R V, Jenkins J N. EST-SSR: A new class of genetic markers in cotton. J Cotton Sci, 2004, 8: 112-123
[11]Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in al-lotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439
[12]Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C M, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D S, Scheffler J. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306-319
[13]Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272: 308-327
[14]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Ge-netic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics, 2005, 274: 428-441
[15]Wang C B, Guo W Z, Cai C P, Zhang T Z. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51: 557-561
[16]Huang X, Madan A. CAP3: A DNA sequence assembly pro-gram. Genome Res, 1999, 9: 868-877
[17]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127
[18]Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187
[19]Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
[20]Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E. Optimizing parental selection for genetic link-age maps. Genome, 1993, 36: 181-186
[21]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg I. MAPMAKER: An interactive com-puter package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
[22]Kosambi D D. The estimation of map distances from recom-bination values. Ann Eugen, 1994, 12: 172-175
[23]Guo W Z, Wang W, Zhou B L, Zhang T Z. Cross-species transferability of G. arboreum-derived EST-SSRs in the dip-loid species of Gossypium. Theor Appl Genet, 2006, 112: 1573-1581
[24]Vendramin E, Dettori M T, Giovinazzi J, Micali S, Quarta R, Verde R. A set of EST-SSRs isolated from peach fruit tran-scriptome and their transportability across Prunus species. Mol Ecol Notes, 2007, 7: 307-310
[25]Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
[26]Blair M W, Giraldo M C, Buendía H F, Tovar E, Duque M C, Beebe S E. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2006, 113: 100-109
[27]Frelichowski Jr J E, Palmer M B, Main D, Tomkins J P, Cantrell R G, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Mol Genet Genomics, 2006, 275: 479-491
[28]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417
[1] 袁清华,谢锐鸿,张振臣,马柱文,李集勤,李淑玲,陈俊标. 烟草表达抗病基因同源物(RGAs)的鉴定及RGA-SSR标记的开发[J]. 作物学报, 2014, 40(02): 240-252.
[2] 王彩洁,孙石,金素娟,李伟,吴存祥,侯文胜,韩天富. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析[J]. 作物学报, 2013, 39(11): 1917-1926.
[3] 谢小玉,张兵,张霞,马仲炼,李加纳. 干旱胁迫下油菜消减文库的构建及分析[J]. 作物学报, 2013, 39(04): 744-752.
[4] 童治军,焦芳婵,吴兴富,王丰青,陈学军,李绪英,高玉龙,张谊寒,肖炳光,吴为人. 烤烟6个农艺性状的QTL定位[J]. 作物学报, 2012, 38(08): 1407-1415.
[5] 牟永潮, 崔红, 于晶, 曾俨, 孟健男, 苍晶. 低温胁迫下东农冬麦1号分蘖节SSH文库的构建及文库中3个基因的表达模式[J]. 作物学报, 2011, 37(05): 918-923.
[6] 束永俊,李勇,吴娜拉胡,柏锡,才华,纪巍,朱延明. 大豆EST-SNP的挖掘鉴定及其CAPS标记的开发[J]. 作物学报, 2010, 36(4): 574-579.
[7] 王俊美,刘红彦,徐红明,王飞,高素霞,康振生. 应用基因芯片分析红蚰麦白粉菌胁迫条件下的基因表达谱[J]. 作物学报, 2009, 35(7): 1188-1193.
[8] 忻如颖,管荣展,张丽君,姜淑慧,张红生,郑秀. 甘蓝型油菜与播娘蒿原生质体融合杂种后代的遗传研究[J]. 作物学报, 2009, 35(6): 1044-1050.
[9] 魏利斌;张海洋;郑永战;郭旺珍;张天真. 芝麻EST-SSR标记的开发和初步研究[J]. 作物学报, 2008, 34(12): 2077-2084.
[10] 吴金华;胡银岗;张宏;王长有;王秋英;吉万全. 小麦种质N9436抗白粉病的特异基因表达谱分析[J]. 作物学报, 2008, 34(07): 1143-1152.
[11] 李红霞;张龙雨;张改生;牛娜;朱展望. 黏类小麦育性相关基因SSH文库的构建[J]. 作物学报, 2008, 34(06): 965-971.
[12] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741-1747.
[13] 张磊;张宝石;周荣华;高丽峰;赵光耀;宋彦霞;贾继增. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX2)的克隆及其遗传作图[J]. 作物学报, 2007, 33(09): 1419-1425.
[14] 刘文荣;张积森;饶进;蔡秋华;翁笑艳;阮妙鸿;阙友雄;陈如凯;张木清. 干旱胁迫下斑茅消减文库的构建及分析[J]. 作物学报, 2007, 33(06): 961-967.
[15] 刘春燕;陈庆山;辛大伟; 邱红梅;单大鹏. 大豆花叶病毒侵染初期的抗病性表达序列标签分析[J]. 作物学报, 2005, 31(11): 1394-1399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!