欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2092-2098.doi: 10.3724/SP.J.1006.2008.02092

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草绒毡层特异启动子pTA29在棉花中的表达特性

尹梦回;董静;李先碧;侯磊;罗明;李德谋;裴炎;肖月华*   

  1. 西南大学生物技术中心 / 农业部生物技术和作物品质改良重点实验室,重庆400716
  • 收稿日期:2008-03-26 修回日期:2008-07-13 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 肖月华
  • 基金资助:

    国家高技术研究发展计划(863计划)项目(2007AA10Z134)

Expression Characteristics of Tobacco Tapetum-Specific Promoter pTA29 in Cotton

YIN Meng-Hui,DONG Jing,LI Xian-Bi,HUO Lei,LUO Ming,LI De-Mou,PEI Yan,XIAO Yue-Hua*   

  1. Biotechnology Research Center, Southwest University / Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing, 400716, China
  • Received:2008-03-26 Revised:2008-07-13 Published:2008-12-12 Published online:2008-10-10
  • Contact: XIAO Yue-Hua

摘要:

烟草绒毡层特异启动子pTA29 (TA29 promoter)已用于多种植物雄性不育和花粉发育的研究。作为外源特异表达启动子pTA29在棉花中的表达特性尚不清楚,为了研究该启动子在棉花中的表达特异性,本文构建了pTA29:gus融合基因,并将其转入棉花。研究发现在GUS染液中添加10%的乙醇可以抑制棉花花药内源GUS活性。用改良的GUS染液进行组织化学染色表明,pTA29:gus转化植株的GUS活性主要存在于花药中,并在花蕾长为6 mm和15 mm的花药中有2个活性高峰,而在根、茎、胚珠、花瓣、苞叶中未被检测到。与烟草不同,在pTA29:gus棉花转化植株的叶片表皮毛和花粉中也能检测到GUS活性。定量RT-PCR分析表明转化子中gus基因的转录水平与GUS活性一致。上述结果表明,烟草绒毡层特异启动子pTA29可以控制下游基因在棉花花药中优势表达;在利用该启动子进行棉花基因功能以及雄性不育研究时,应注意该启动子在棉花中的表达范围和组织特异性。

关键词: pTA29, 棉花, 内源GUS活性, 表达特异性

Abstract:

Tobacco tapetum-specific promoter pTA29 is widely used to create male sterile lines and to study pollen development in various plants. However, the pTA29 expression characteristics in cotton is still not elucidated. To determine the expression characteristics of pTA29 promoter in cotton, gus gene was fused downstream to pTA29, transformed into cotton. It was demonstrated that 10% alcohol suppressed the intrinsic GUS-like activity in cotton anther. GUS staining with modified solution showed that the GUS activity in the pTA29:gus transformants mainly exited in anthers with two peaks in the floral buds of 6 and 15 mm, while no GUS activity was detected in roots, stems, ovules, petals and bracts. Inconsistent with that in tobacco, the GUS activity was also detected in the leaf trichomes and pollens in pTA29:gus transformants. Real-time RT-PCR analysis indicated that the gus transcripts accumulated in a same pattern with the GUS activity. These results suggest that the tobacco tapetum-specific promoter pTA29 can drive the downstream genes to express preferentially in anthers of cotton. The application of pTA29 in cotton male sterility engineering was discussed.

Key words: pTA29, Cotton, Intrinsic GUS-like activity, Expression Specificity

[1]Mariani C, De Beuckeleer M, Truettner J, Leemans J, Gold-berg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347: 737-741
[2]Xu F(徐芳), Xiong A-S(熊爱生), Peng R-H(彭日荷), Hou X-L(侯喜林), Yao Q-H(姚泉洪). Progress in the study on conditional male sterility in plants by genetic engineering. Hereditas(Beijing)(遗传), 2006, 28(4): 507-510(in Chinese with English abstract)
[3]Yang Z-L(杨泽良), Dang X-M(党选民), Cao Z-M(曹振木), Hu K-L(胡开林). The application of gene engineering on creating male sterility in plants. Chin Agric Sci Bull (中国农学通报), 2005, 21(10): 25-29(in Chinese with English abstract)
[4]Koltunow A M, Truettner J, Cox K H, Wallroth M, Goldberg R B. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell, 1990, 2: 1201-1224
[5]Denis M, Delourme R, Gourret J P, Mariani C, Renard M. Expression of engineered nuclear male sterility in Brassica napus. Plant Physiol, 1993, 101: 1295-1304
[6]Huang S, Cerny R E, Qi Y, Bhat D, Aydt C M, Hanson D D, Malloy K P, Ness L A. Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol, 2003, 131: 1270-1282
[7]Zhang Y-M(张玉满), Wang H-Y(王寰宇), Liu Y-L(刘玉乐). Gene Engineering Insect Resistant Hybrid Cotton (基因工程抗虫杂交棉). In: Jia S-R(贾士荣), Guo S-D(郭三堆), An D-C(安道昌), eds. Transgenic Cotton (转基因棉花), Beijing: Science Press, 2001. pp 235-240(in Chinese)
[8]Zhang H-J(张惠军), Wang H-Y(王寰宇), Shi Y-J(石跃进), Zhang Y-M(张玉满), Yue J-X(岳见雄), Wu S-J(吴慎杰), Zhu Y-H(朱永红), Liu Y-L(刘玉乐), Yang H-Y(杨怀义). Cotton genetic tranformation of barnase male sterility gene. Cotton Sci (棉花学报), 2007, 19(4): 261-266 (in Chinese with Eng-lish abstract)
[9]Song H-Y(宋洪元), Cao B-H(曹必好), Ding J-G(丁建刚), Lei J-J(雷建军), Song M(宋明). Constructions of male steril-ity gene and fertility restoring gene expression vectors by Cre/loxp site-specific recombination system. J Agric Bio-technol (农业生物技术学报), 2004, 12(4): 396-400 (in Chi-nese with English abstract)
[10]Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J, 2007, 51: 419-430
[11]Xiao Y H, Li X B, Yang X Y, Luo M, Hou L, Guo S H, Luo X Y, Pei Y. Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its etopic expression enhaces fungal resistance in transgenic plants. Biosci Biotechnol Bio-chem, 2007, 71: 1211-1219
[12]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 1962, 15: 473-497
[13]Shenk R U, Hildebrandt A C. Medium and techniques for in-duction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot, 1972, 50: 199-204
[14]Li Y-E(李燕娥), Zhu Z(朱祯), Wu X(吴霞), Meng J-H(孟晋红), Fan X-P(范小平), Wu J-H(吴家和), He J-X(何鉴星), Shi G-C(史高川), Xiao J-L(肖娟丽), Zhang H-X(张换样). Report on grafts of transgenic cotton. China Cotton (中国棉花), 2000, 27(3): 25-30(in Chinese)
[15]Xiao Y-H(肖月华), Luo M(罗明), Fang W-G(方卫国), Luo K-M(罗克明), Hou L(侯磊), Li D-M(李德谋), Pei Y(裴炎). PCR walking in cotton genome using YADE method. Acta Genet Sin (遗传学报), 2002, 29(1): 62-66 (in Chinese with English abstract)
[16]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press, 1989
[17]Zhu Y Q, Xu K X, Luo B, Wang J W, Chen X Y. An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers. Plant Physiol, 2003, 133: 580-588
[18]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidaseas a sensitive gene fusion marker in higher plants. EMBO J, 1987, 6: 3901-3907
[19]Hu Q Y, Chee P P, Miller P D. Intrinsic GUS-like activity in soybean. Soybean Sci, 1991, 10: 200-204
[20]Plegt L, Bino R J. β-Glucuronidase activity during develop-ment of the male gametophyte from transgenic and non-transgenic plants. Mol Gen Genet, 1989, 216: 321-327
[21]Kosugi S, Ohashi Y, Nakajima K, Arai Y. An improved assay for β-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci, 1990, 70: 133-140
[22]Burgess D G, Ralston E J, Hanson W G, Heckert M, Ho M, Jenq T, Palys J M, Tang K, Gutterson N. A novel, two-component system for cell lethality and its use in engi-neering nuclear male-sterility in plants. Plant J, 2002, 31: 113-125
[23]Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature de-generation of tapetum and pollen abortion in Petunia. Plant Cell, 2002, 14: 2353-2367
[24]Mansoor S, Amin I, Hussain M, Zafar Y, Briddon R W. En-gineering novel traits in plants through RNA interference. Trends Plant Sci, 2006, 11: 559-565
[25]Wendel J F, Cronn R C, Johnston J S, Price H J. Feast and famine in plant genomes. Genetica, 2002, 115: 37-47
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!