欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 240-252.doi: 10.3724/SP.J.1006.2014.00240

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草表达抗病基因同源物(RGAs)的鉴定及RGA-SSR标记的开发

袁清华,谢锐鸿,张振臣,马柱文,李集勤,李淑玲,陈俊标*   

  1. 广东省农业科学院作物研究所, 广东广州 510640
  • 收稿日期:2013-06-02 修回日期:2013-07-25 出版日期:2014-02-12 网络出版日期:2013-10-22
  • 基金资助:

    本研究由?广东省烟草专卖局科技计划项目(201106), 广东省科技计划项目(2010B020302004)和广东省烟草专卖局(公司)科技项目(200905)资助。

Identification of Expressed Resistance Gene Analogues (RGAs) and Development of RGA-SSR Markers in Nicotiana

YUAN Qing-Hua,XIE Rui-Hong,ZHANG Zhen-Chen,MA Zhu-Wen,LI Ji-Qin,LI Shu-Ling,CHEN Jun-Biao*   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
  • Received:2013-06-02 Revised:2013-07-25 Published:2014-02-12 Published online:2013-10-22

摘要:

烟草是研究植物与病原菌互作的理想材料。鉴定烟草抗病基因及其同源物对揭示抗病机制具有重要意义。近年来公共数据库不断增长的EST序列为烟草表达RGA的鉴定提供丰富的数据。本研究通过拼接GenBank收录的412 325条烟草EST序列,获得149 606Uni-EST序列。随后利用已克隆的112个植物R基因蛋白序列对其扫描,检测出1113NtRGA,其中有2735465310230个分别包含NBS-LRRLRR-PKLRRPKMlo结构域,另有109个未检测到结构域。通过序列比对将1071NtRGA定位于N. benthamiana基因组712个位点上。经搜索,从72NtRGA检测出78SSR,根据其侧翼序列设计64对引物。54对成功从烟草基因组DNA中扩增出清晰条带,9对在24个普通烟草品种间检测出多态性,检出等位基因数2~4个,平均2.56个;41对在6个烟草种间检测出多态性,检出等位基因数2~4个,平均2.61个。

关键词: 烟草, 表达序列标签, 抗病基因同源物, SSR

Abstract:

Tobacco is an important cash crop and an ideal experimental system for studies on plant-pathogen interaction. Identification of tobacco R gene and resistance gene analogs is propitious to elucidating the underlying resistant mechanisms. In recent years, the growing public tobacco EST data provide rich source for identifying expressed RGA. In this study, 149 606 Uni-EST were assembled from 412 325 ESTs of tobacco in GenBank. By scanning the Uni-EST with 112 plant R gene protein sequences 1113 NtRGAs were identified. These expressed RGAs comprised 273, 546, 53, 102, and 30 of NBS-LRR, LRR-PK, LRR, PK, and Mlo domains encoding R genes, respectively. No domain was detected in the rest of 109 RGAs. By aligning sequence 1079 NtRGAs were allocated on 712 loci in N. benthamiana A total of 78 simple sequence repeats (SSRs) were identified from 72NtRGAs. Sixty-four primer pairs were designed base on the flanking sequence of SSR. Among them, 54 primer pairs were amplified with clear bands from tobacco genomic DNA. Nine primer pairs were detected to have polymorphism among 24 varieties of Nicotiana tabacum with two to four alleles (on average 2.56 alleles). Forty-one primer pairs were detected to have polymorphism among six species in Nicotiana with two to four alleles (on average 2.61 alleles).genome.

Key words: Nicotiana, Expressed sequence tags, Resistance gene analogs, SSR

[1]Ellis J, Dodds P, Pryor T. The generation of plant disease resistance gene specificities. Trends Plant Sci, 2000, 5: 373–379



[2]Sanseverino W, Roma G, Simone M D, Faino L, Melito S, Stupka E, Frusciante L, Ercolano M R. PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucl Acids Res, 2009, 38: D815



[3]Johal G S, Briggs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 258: 985–987



[4]Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA, 1996, 93: 8776–8781



[5]Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K, Jones J D G, Lane C. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat protein. Cell, 1996, 84: 451–459



[6]Bent A F. Plant disease resistance genes: function meets structure. Plant Cell, 1996, 8: 1757–1771



[7]Meyers B C, Dickerman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W, Young N D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999, 20: 317–332



[8]Hulbert S H, Webb C A, Smith S M, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285–312



[9]Dangl J L, Jones J D: Plant pathogens and integrated defence responses to infection. Nature, 2001, 411: 826–833



[10]Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809–834



[11]Bent A F, Kunkel B N, Dahlbeck D, Brown K L, Schmidt R, Giraudat J, Leung J, Staskawicz B J: RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 1994, 265: 1856–1860



[12]Dunning F M, Sun W, Jansen K L, Helft L, Bent A F. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell, 2007, 19: 3297–3313



[13]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804–1806



[14]Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones J D, Holub E B. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol, 2004, 135: 1100–1112



[15]Martin G B, Brommonschenkel S H, Chunwongse J, Frary A, Ganal M W, Spivey R, Wu T, Earle E D, Tanksley S D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432–1436



[16]Taler D, Galperin M, Benjamin I, CohenY, Kenigsbuch D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell, 2004, 16: 172–184



[17]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, DieRGLarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705



[18]Botella M A, Coleman M J, Hughes D E, Nishimura M T, Jones J D G, Somerville S C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J, 1997, 12: 1197–1211



[19]Aarts M G M, Hekkert B L, Holub E B, Beynon J L, Stiekema W J, Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact, 1998, 11: 251–258



[20]Graham M A, Marek L F, Lohnes D, Cregan P, Shoemaker R C. Expression and genome oRGLnization of resistance gene analogs in soybean. Genome, 2000, 43: 86–93



[21]Mago R, Nair S, Mohan M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet, 1999, 99: 50–57



[22]Collins N C, Webb C A, Seah S, Ellis J G, Hulbert S H, Pryor A. The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact, 1998, 11: 968–978



[23]Seah S, Sivasithamparam K, Karakousis A, Lagudah E S. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937–945



[24]Leng X, Xiao B, Wang S, Gui Y, Wang Y, Lu X, Xie J, Li Y, Fan L. Identification of NBS-type resistance gene homologs in tobacco genome. Plant Mol Biol Rep, 2010, 28: 152–161



[25]Gao Y L, Xu Z L, Jiao F C, Yu H Q, Xiao B G, Li Y P, Lu X P. Cloning, structural features, and expression analysis of resistance gene analogs in tobacco. Mol Biol Rep, 2010, 37: 345–354



[26]Wan H J, Zhao Z G, Malik A, Qian C T, Chen J F. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC plant Biol, 2010, 10: 186



[27]Huettel B, Santra D, Muehlbauer J, Kahl G. Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet, 2002, 105: 479–490



[28]Nair R A, Thomas G. Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theor Appl Genet, 2007, 116: 123–134



[29]Bertioli D J, Leal-Bertioli S C, Lion M B, Santos V L, Pappas G, Cannon S B, Guimaraes P M. A large scale analysis of resistance gene homologues in Arachis. Mol Gen Genomics, 2003, 270: 35–45



[30]Monsi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109: 1434–1447



[31]Ameline-Torregrosa C, Wang B B, O'Bleness M S, Deshpande S, Zhu H Y, Roe B, Young N D, Cannon S B. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol, 2008, 146: 5–21



[32]Li X Y, Cheng Y, Ma W, Zhao Y, Jiang H Y, Zhang M. Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst Evol, 2010, 289: 101–110



[33]Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC Plant Biol, 2012, 12: 42



[34]Liu Z, Feng S, Pandey M K, Chen X, Culbreath A K, Varshney R K, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. J Integr Plant Biol, 2013, 55: 453–461



[35]Sanz M J, Loarce Y, Fominaya A, Vossen J H, Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. Theor Appl Genet, 2013, 126: 203–218



[36]Loarce Y, Sanz M J, Irigoyen M L, Fominaya A, Ferrer E. Mapping of STS markers obtained from oat resistance gene analog sequences. Genome, 2009, 52: 608–619



[37]Tantasawat P A, Poolsawat O, Prajongjai T, Chaowiset W, Tharapreuksapong A. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines. Genet Mol Res, 2012, 11: 1799–1809



[38]Palomino C, Fernández-Romero M D, Rubio J, Torres A, Moreno M T, Millán T. Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet, 2009, 118: 671–682



[39]Flor H H. The complementary genic systems in flax and flax rust. Adv Genet, 1956, 8: 29–54



[40]Dilbirligi M, Gill K S. Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol, 2003, 53: 771–787



[41]Xiao W K, Xu M L, Zhao J R, Wang F G, Li J S, Dai J R. Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet, 2006, 113: 63–72



[42]Rossi M, Araujo P G, Paulet F, Garsmeur O, Dias V M, Chen H, Van Sluys M A, D’Hont A: Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genom, 2003, 269: 406–419



[43]Xiao W K, Zhao J, Fan S C, Li L, Dai J R, Xu M L. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor Appl Genet, 2007, 115: 501–508



[44]He L, Du C, Covaleda L, Xu Z, Robinson A F, Yu J Z, Kohel R J, Zhang H B. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant Microbe Interact, 2004, 17: 1234–1241



[45]Peñuela S, Danesh D, Young N D. Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean. Theor Appl Genet, 2002, 104: 261–272



[46]Bertioli D J, Moretzsohn M C, Madsen L H, Sandal N, Leal-Bertioli S C, Guimaraes P M, Hougaard B K, Fredslund J, Schauser L, Nielsen A M, Sato S, Tabata S, Cannon S B, Stougaard J. An analyses of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics, 2009, 10: 45



[47]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 23: 219–230

[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[7] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[8] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[9] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[10] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[11] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[12] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[13] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[14] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[15] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!