欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2121-2125.doi: 10.3724/SP.J.1006.2008.02121

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦抗白粉病SSH-cDNA文库中差异基因的表达模式

吴金华1,2;胡银岗1;王新茹3;张宏1;王长有1;王秋英1;吉万全1,*   

  1. 1 西北农林科技大学农学院 / 陕西省农业分子生物学重点实验室 / 国家小麦改良中心杨凌分中心,陕西杨凌712100;2 河北农业大学农学院,河北保定071001;3 陕西省农药管理检定所,陕西西安710003
  • 收稿日期:2008-03-07 修回日期:2008-06-05 出版日期:2008-12-12 网络出版日期:2008-09-06
  • 通讯作者: 吉万全
  • 作者简介:吴金华(1978-),女,山西朔州人,博士,主要从事小麦抗病育种及其分子生物学研究.
  • 基金资助:

    国家重点基础研究发展计划(973计划)前期项目(2006CB708208);国家科技支撑计划项目(2006BAD01A02)

Expression Pattern of Special Genes Resistant to Powdery Mildew (Blumeria graminis f. sp. tritici) in SSH-cDNA Library of Wheat

WU Jin-Hua1,HU Yin-Gang1,WANG Xin-Ru2,ZHANG Hong1,WANG Chang-You1,WANG Qiu-Ying1,JI Wan-Quan1*   

  1. 1 College of Agronomy, Northwest A&F University / Yangling Branch of China Wheat Improvement Center / Shaanxi Provincial Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi; 2 College of Agronomy, Agricultural University of Hebei, Baoding 071001, Hebei; 3 Institute for the Control of Agrochemicals of Shaanxi Province, Xi’an 710003, Shaanxi, China
  • Received:2008-03-07 Revised:2008-06-05 Published:2008-12-12 Published online:2008-09-06
  • Contact: JI Wan-Quan

摘要:

为了解白粉菌诱导下抗白粉病小麦的抗病机制,构建了白粉菌接种初期的抑制性消减杂交cDNA(SSH-cDNA)文库。从中随机挑取140个阳性克隆进行测序,去除冗余序列和重复序列后,得到94条EST,利用NCBI的BLAST在线序列比对工具对GenBank的蛋白质数据库进行同源性比对及功能分类。结果表明,49个EST与已知功能蛋白同源性较高,主要涉及初级代谢(2%)、能量代谢(24%)、细胞结构(2%)、转录(2%)、蛋白质合成加工与储藏(16%)、转运(4%)、信号转导(4%)和抗病与防御(30%)。经文库比较,筛选出与病程相关蛋白基因同源的EST(Z25-1)和与谷胱甘肽硫转移酶同源的EST(Z440-1),GenBank登录号为EX567369和EX567360。以其EST序列为依据设计引物,通过RT-PCR分析它们在白粉菌诱导下的表达模式,结果该2基因表达存在明显差异。其中,Z25-1在未接种白粉菌时具有一定的表达量,白粉菌侵染后表达量开始上升,侵染72 h时表达量最高,然后下降;Z440-1在未接种时也具有一定的表达量,但在接种初期表达微弱,甚至不表达,24 h后表达开始上升,到72 h时达最高,然后下降。本研究表明,病程相关蛋白和谷胱甘肽硫转移酶属于诱导型表达基因,且参与白粉病抗病反应,在白粉菌诱导72 h时表达量最高。

关键词: 小麦, 白粉病, 抑制性消减杂交(SSH), 反转录聚合酶链式反应(RT-PCR)

Abstract:

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important fungal diseases of common wheat (Triticum aestivum L.) worldwide and causes severe yield losses. Wheat germplasm N9436, developed by our research group, is a resistant material to powdery mildew. In the present study, a suppression subtraction hybridization (SSH) cDNA library was constructed with cDNA from N9436 leaf inoculated by Blumeria graminis as the tester and cDNA from N9436 healthy leaf as the driver. A total of 140 positive clones were randomly chosen from the SSH-cDNA library and were amplified with sp6 and t7 primers to examine the insert size, which ranged from 200 to 1 000 bp with an average of 238 bp. After screening repeat and redundancy sequences, 94 expressed sequence tags (ESTs) were acquired. Protein homology search in nr-protein database revealed that 49 ESTs were highly homologous with known proteins functioning in primary metabolism (2%), energy metabolism (24%), cell structure (2%), transcription (2%), protein synthesis and processing (16%), transport (4%), signal transduction (4%), and disease resistance and defenses (30%). Compared with the EST sequences among the SSH-cDNA library, 2 ESTs (GenBank accession number: EX567369 and EX567360) were highly similar to pathogenesis-related protein (Z25-1) and glutathione-S-transferase (Z440-1), respectively. On the basis of the EST sequences, 2 pairs of primers were designed and used to detect the expression differences of the 2 genes when inoculating with powdery mildew by Reverse Transcriptase PCR (RT-PCR). Z25-1 and Z440-1 were both expressed under inoculation. Their expression amounts were the largest in 72 h after inoculation with powdery mildew. But their expression trends were different. At early stage of inoculation (24 h after inoculation), the expression amount of Z440-1 was very a little, then increased in 72 h, and finally decreased in 96 h. The expression amount of Z25-1 increased from 24 h to 72 h after inoculation and decreased after 96 h. It suggests that pathogenesis-related protein and glutathione-S-transferase belong to inducible expression genes and are involved in the resistance to powdery mildew.

Key words: Wheat, Powdery mildew, Suppression subtraction hybridization (SSH), Reverse transcriptase PCR

[1]Liao Y(廖勇), Zhang Z-Y(张增艳), Du L-P(杜丽璞), Xu H-J(徐惠君), Yao W-L(姚乌兰), Shi J-Y(石建业), Ren Z-L(任正隆), Xin Z-Y(辛志勇). Isolation of RAR1 gene from Thinopyrum in-termedium and analysis of its function in wheat background. Sci Agric Sin (中国农业科学), 2007, 40(8): 1667–1674 (in Chinese with English abstract)
[2]Luo M(骆蒙), Kong X-Y(孔秀英), Huo N-X(霍纳新), Zhou R-H(周荣华), Jia J-Z(贾继增). ESTs analysis of resistance to powdery mildew in wheat at primary infected stage. Acta Genet Sin (遗传学报), 2002, 29(6): 525–530 (in Chinese with English abstract)
[3]Wang Z Y, Wang Y C, Chen X R, Shen G, Zhang Z G, Zheng X B. Differential screening reveals genes differentially expressed in low- and high-virulence near-isogenic Phytophthora sojae lines. Fung Genet Biol, 2006, 43: 826–839
[4]Chen Y, Wang H, Wang X, Cao A, Chen P. Cloning and expres-sion of peroxisomal ascorbate peroxidase gene from wheat. Mol Biol Rep, 2006, 33: 207–213
[5]Wong Y Y, Ho C L, Nguyen P D, Teo S S, Harikrishna J A, Ra-him R A, Wong M C V L. Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppres-sion subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot, 2007, 86: 117–122
[6]Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei J, Ye Z. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot, 2007, 58: 507–520
[7]Lin C S, Lai Y H, Sun C W, Liu N T, Tsay H S, Chang W C, Chen J J W. Identification of ESTs differentially expressed in green and albino mutant bamboo (Bambusa edulis) by suppres-sive subtractive hybridization (SSH) and microarray analysis. Plant Cell Tissue Organ Cult, 2006, 86: 169–175
[8]Chen Y P, Wang H Z, Cao A Z, Wang C M, Chen P D. Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21. J Integr Plant Biol, 2006, 48: 715–721
[9]Wang Y-Z (汪以真), Lin W-X(林文学), Xu Z-R(许梓荣). Anti-bacterial peptide pr-39 gene-expression in different growth stages of pig evaluated by semi-quantitative RT-PCR method. J Agric Biotechnol (农业生物技术学报), 2004, 12(1): 52–55(in Chinese with English abstract)
[10]Dong H-P(董宏平), Peng J-L(彭建令), Yu X-J(余晓江), Zhao J(赵静), Wang Y(王颖), Dong H-S(董汉松). Studies on methods in cloning and expression quantification of genes that regulate plant disease resistance signal transduction. J Nanjing Agric Univ (南京农业大学学报), 2003, 26(4): 30–35(in Chinese with Eng-lish abstract)
[11]Sun X-H(孙晓红), Feng A-P(冯爱萍), Chen M-J(陈明杰), Pan Y-J(潘迎捷). Cloning and sequence analysis of cold induced genes in Chinese straw mushroom, Volvariella volvacea. Myco-systema (菌物学报), 2006, 25(1): 88–93(in Chinese with English abstract)
[12]Zhang L-N(张丽娜), Niu J-S(牛吉山), Yu L(于玲). Expression analysis of wheat TaMlo-A1c gene by semi-QRT-PCR. Acta Bot Boreal-Occident Sin (西北植物学报), 2005, 25(7): 1368–1371(in Chinese with English abstract)
[13]Li R, Rimmer R, Buchwaldt L, Sharpe A G, Séguin-Swartz G, Coutu C, Hegedus D D. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: Expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fung Genet Biol, 2004, 41: 735–753
[14]Bevans M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterh?ft A, Moores T, Jones J D G, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H W, Klosterman S, Schueller C, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 485–488
[15]Cao A-Z(曹爱忠), Li Q(李巧), Chen Y-P(陈雅平), Zou X-W(邹晓文), Wang X-E(王秀娥), Chen P-D(陈佩度). Screening resis-tance-related gene to powdery mildew in Haynaldia villosa using barly genechip and studying its mechanism of resistance. Acta Agron Sin (作物学报), 2006, 32(10): 1444–1452 (in Chinese with English abstract)
[16]Luo M(骆蒙), Kong X-Y(孔秀英), Huo N-X(霍纳新), Zhou R-H(周荣华), Jia J-Z(贾继增). Analysis of gene resistant to powdery mildew by suppression subtractive hybridization. Chin Sci Bull (科学通报), 2002, 47(16): 1237–1241 (in Chinese)
[17]He D-Y(何道一), Wang H-G(王洪刚). Cloning of a new phos-phoserine aminotransferase in the substitution resistant to pow-dery mildew of wheat—Agropyron elongatum. Chin Sci Bull (科学通报), 2005, 50(6): 535–539 (in Chinese)
[18]Ma J-B(马金彪), Wang X-J(王晓杰), Yu X-M(于秀梅), Xu L-S(徐亮胜), Han Q-M(韩青梅), Huang L-L(黄丽丽), Kang Z-S(康振生). Construction of cDNA library from wheat leaves challenged by Puccinia striiformis and analysis of expressed se-quence tags. Acta Phytopathol Sin (植物病理学报), 2007, 37(5): 487–499 (in Chinese with English abstract)
[19]Yang P(杨平), Hu J(胡军), Wang Y-C(王玉成), Yin W-B(尹维波), Chen Y-H(陈宇红), Jiang J(姜静), Li J-L(李集临), Hu Z-M(胡赞民). Cloning and function characterization of glu-tathione-S-transferase gene from Tamarix and rossowii. J Agric Biotechnol (农业生物技术学报), 2007, 15(1): 76–80 (in Chinese with English abstract)
[20]Enayati A A, Ranson H, Hemingway J. Insect glutathione trans-ferases and insecticide resistance. Insect Mol Biol, 2005, 14: 3–8
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!