欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 718-723.doi: 10.3724/SP.J.1006.2009.00718

• 耕作栽培·生理生化 • 上一篇    下一篇

缺钾对棉花幼苗根系生长的影响及其生理机制

张志勇12,王清连2,李召虎1,段留生1,田晓莉1*   

  1. 1中国农业大学农学与生物技术学院/植物生理学与生物化学国家重点实验室,北京100193;2河南科技学院生命科技学院,河南新乡453003
  • 收稿日期:2008-08-29 修回日期:2008-12-13 出版日期:2009-04-12 网络出版日期:2009-02-16
  • 通讯作者: 田晓莉 E-mail:tian_xiaoli@163.com
  • 基金资助:

    本研究由国家自然科学基金(30100111和30571118)项目,高等学校科技创新工程重大项目培育资金项目(707008)资助。

Effect of Potassium Deficiency on Root Growth of Cotton(Gossipium hirsutum L.)Seedlings and Its Physiological Mechanisms Involved

ZHANG Zhi-Yong12,WANG Qing-Lian1,LI Zhao-Hu1,DUAN Liu-Sheng1,TIAN Xiao-Li1*   

  1. 1Agronomy and Biotechnology College/State Key Laboratory of National Plant Physiology and Biochemistry,China Agricultural University,Beijing 100193,China;2School of Life Science and Technlogy,Henan Institute of Science and Technology,Xinxiang 45003,China
  • Received:2008-08-29 Revised:2008-12-13 Published:2009-04-12 Published online:2009-02-16
  • Contact: TIAN Xiao-Li E-mail:tian_xiaoli@163.com

摘要:

缺钾及因缺钾而导致的早衰已成为当前我国棉花生产的主要限制因素, 而根系的生长发育与钾素营养互相影响、关系密切。本试验在生长室内营养液培养条件下,调查缺钾对棉花幼苗根系性状指标的影响, 测定根系游离吲哚乙酸(IAA)和乙烯释放量。结果显示, 与适钾处理(0.50 mmol L-1)相比, 缺钾处理(0.05 mmol L-1)显著抑制了根系伸长和侧根发生, 而且侧根的减少主要由侧根发生区的缩短所致, 侧根发生密度并无变化, 似乎缺钾减慢了侧根发育的进程, 但不改变可以发育为侧根的中柱鞘细胞的发育状况。此外, 细根(0.05~0.20 mm)生长受缺钾的影响最大, 绝对根长、根表面积、根体积及其占总根系的比例均显著降低;中等根(0.25~0.45 mm)受到影响最小, 粗根(>0.45 mm)居中。由于细根的吸收活性强于中等根和粗根, 因而缺钾幼苗的钾营养状况较根系生长更为恶化, 处理4 d10 d的整株钾积累量仅分别为适钾处理的25%左右和16%左右, 而其总根长和根系总表面积分别相当于适钾处理的35.7%~38.0%(处理4 d)47.7%~50.6%(处理10 d)。与适钾条件相比,缺钾使根系的游离吲哚乙酸(IAA)含量降低约50%, 而乙烯释放量提高将近6, 这可能是缺钾抑制棉花幼苗根系生长的重要原因之一。

关键词: 棉花, 根系, IAA, 乙烯

Abstract:

Premature senescence caused by potassium (K) deficiency has been an important limiting factor in cotton production in China, and K uptake ability of plant from media has a close correlation with root growth and development. In the present study, cotton cultivar NuCOTN99B was sowed in sand in growth chamber, uniform cotton seedlings were transferred to 1/2-strength modified Hoagland’s solution with low (0.05 mmol L-1) or moderate (0.50 mmol L-1) K+ at 4 d after germination to investigate the effect of K levels on the root system indicators, endogenous free indole acetic acid (IAA) content and ethylene amount released from the cotton seedlings root. The results showed that the lateral root formation of seedlings grown in low K solution for four days was significantly inhibited by about 20%. After 10 d treatment, root elongation was also significantly reduced. Furthermore, we found that the reduction of lateral root was mainly resulted from short length of branched root zone, and there was no change in the density of lateral root under lower K. In addition, root system was classified into fine roots (0.05–0.20 mm), middle roots (0.25–0.45 mm), and coarse roots (> 0.45 mm) according to root diameter. Total root length and total root surface area of cotton seedlings grown in low K media for four days reduced by about 60%, and the fine root was inhibited severely, the coarse roots moderately, and the middle roots slightly. For example, the root length, root surface area and root volume of fine roots grown in low-K media for 4 and 10 d were only approximately 10% and 25% of those in moderate-K media, respectively. Additionally, only fine roots were constantly inhibited by low-K during treatment period in terms of the ratios of different diameter’s roots to total roots, which resulted in the fact that the magnitude of K deficiency in cotton seedling was higher than that of inhibition of root growth, because the uptake activity in fine roots is higher than those in middle and coarse roots. For example, the accumulated K of seedlings grown in low-K solution for 4 d and 10 d were 25% and 16% of that grown in moderate-K solution, respectively; whereas the total root length and total root surface area were 35.7–38.0% (4 d) and 47.7–50.6% (10 d). As expected, the endogenous free indole acetic acid (IAA) content in roots grown in low-K media was reduced by 50%, whereas the amount of ethylene release had nearly six-fold increase, which might provide an explanation to some extent for the inhibition of lateral root formation and root elongation by potassium deficiency.

Key words: Cotton(Gossipium hirsutum L.), Potassium(K), Root growth, Indole acetic acid(IAA), Ethylene

[1] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press. 1995
[2] Pettigrew W T, Meredith Jr W R. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr, 1997, 20: 531–548
[3] Zhou T-H(周桃华), Zhang H-P(张海鹏), Liu L(刘玲). Studies on effect of potassium fertilizer applied on yield of Bt cotton. Chin Agric Sci Bull (中国农学通报), 2006, 22(8): 292–296 (in Chinese with English abstract)
[4] Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007, 30: 659–670
[5] Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal root system and the shoot in barley. New Phytol, 1975, 75: 479–490
[6] Chen J-X(陈际型). Effect of K nutrition on rice root growth and nutrient uptake. Acta Pedolog Sin (土壤学报), 1997, 34(2): 182–188(in Chinese with English abstract)
[7] Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827–8832
[8] Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signalling. Plant Physiol, 2004, 136: 2556–2576
[9] Rengel A, Damon P M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant, 2008, 133: 624–636
[10] Gerik T J, Morrison J E, Chichester F W. Effects of controlled-traffic on soil physical properties and crop rooting. Agron J, 1987, 79: 434–438
[11] Cope J T. Effects of 50 years of fertilization with phosphorus and potassium on soil test levels and yields at six locations. Soil Sci, 1981, 45: 342–347
[12] Mengel K. Response of various crop species and cultivars to fertilizer application. Plant Soil, 1983, 72: 305–319
[13] Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crops Res, 1990, 23: 187–203
[14] Tian X-L(田晓莉), Wang G-W(王刚卫), Zhu R(朱睿), Yang P-Z(杨培珠), Duan L-S(段留生), Li Z-H(李召虎). Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta Agron Sin (作物学报), 2008, 34(8): 1435–1443 (in Chinese with English abstract)
[15] Jing C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the K-efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)
[16] Cassman K G, Kerby T A, Roberts B A, Bryant D C, Brouder S M. Differential response of two cotton cultivars to fertilizer and soil potassium. Agron J, 1989, 81: 870–876
[17] Kang H M, Saltveit M E. Reduced chilling tolerance in elongating cucumber seedling radicals is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant, 2002, 115: 244–250
[18] Edlund A, Eklǒf S, Sundberg B, Moritz T, Sandberg G. A microscale for gas chromatograph-mass spectrometry measurements of picogram amounts of indole-3-acetic in plant tissues. Plant Physiol, 1995, 108: 1043–1047
[19] Reddy K R, Zhao D L. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Res, 2005, 94: 201–213
[20] Gopal R, Dube B K, Sinha P, Chatterjee C. Potassium stress changes in cotton metabolism. Annu Agric Res, 2001, 22: 253–257
[21] Pettiet J V. Calibration of the Mehlich 3 soil test for potassium using leaf analyses and potassium deficiency symptoms in cotton plants. Commun Soil Sci Plant Anal, 1994, 25: 3115–3127
[22] Singh D, Brar M S, Brar A S. Critical concentration of potassium in cotton (Gossypium hirsutum L.). J Agric Sci, 1992, 118: 71–75
[23] Graham R D. Breeding for nutritional characteristic in cereals. Adv Plant Nutr, 1984, 1: 57–102
[24] Sullivan W M, Jiang Z C, Hull R J. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci, 2000, 40: 765–772
[25] Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407–409
[26] Kutz A, Muller A, Henning P, Kaiser W M, Piotrowsky M, Weiler E W. A role for nitrilase in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J, 2002, 30: 95–106
[27] Linkohr B I, Williamson L C, Fitter A H, Leyser O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J, 2002, 29: 751–760
[28] López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol, 2003, 6: 280–287
[29] Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol, 2004, 162: 9–24
[30] de Jager A. Effects of localized supply of H2PO4-, NO3-, SO42-, Ca2+ and K+ on the production and distribution of dry matter in young maize plants. Neth J Agric Sci, 1982, 30: 193–203
[31] Scott B J, Robson A D. The distribution of Mg, P and K in the split roots of subterranean clover. Ann Bot, 1991, 67: 251–256
[32] Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo B, Dubrovsky J G, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol, 2005, 46: 174–184
[33] Bednarz C W, Oosterhuis D M, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot, 1998, 39: 131–139
[34] Zhao D, Oosterhuis D M, Bednarz C W, Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastracture of cotton plants. Photosynthetica, 2001, 39: 103–109
[35] Pettigrew W T. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron J, 1999, 91: 962–968
[36] Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M J. Dissecting Arabidopsis lateral root development. Trends Plant Sci, 2003, 8: 165–171
[37] Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529–538
[38] Zhang H M, Jennings A, Barlow P W, Forde B G. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA, 1999, 96: 6529–6534
[39] Linkohr B I, Williamson L C, Fitter A H, Leyser H M O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J, 2002, 29: 751–760
[40] Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiency: a role for potassium transport proteins. J Exp Bot, 2006, 57: 425–436
[41] Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J, 2004, 40: 523–535
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[10] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[11] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[15] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!