欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 724-732.doi: 10.3724/SP.J.1006.2009.00724

• 耕作栽培·生理生化 • 上一篇    下一篇

水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响

胡梦芸;李辉*;张颖君;刘茜   

  1. 河北省农林科学院粮油作物研究所/河北省作物遗传育种实验室,河北石家庄050031
  • 收稿日期:2008-08-28 修回日期:2008-10-25 出版日期:2009-04-12 网络出版日期:2009-01-16
  • 通讯作者: 李辉
  • 基金资助:

    本研究由河北省自然科学基金项目(C2007000990)资助

Photosynthesis and Related Physiological characteristics Affected by Exogenous Glucose in Wheat Seedlings under Water Stress

HU Meng-Yun;Li Hui*;ZHANG Ying-Jun;LIU Qian   

  1. Institute of Cereal and Oil Crops,Hebei Academy of Agricultural and forestry Sciences/Hebei Provincial Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031,China
  • Received:2008-08-28 Revised:2008-10-25 Published:2009-04-12 Published online:2009-01-16
  • Contact: LI Hui

摘要:

15%聚乙二醇(PEG-6000)模拟水分胁迫,以不同浓度外源葡萄糖(Glc)处理小麦幼苗,探讨外源Glc对水分胁迫下小麦幼苗生长发育和光合特性的影响。结果表明,水分胁迫显著降低了小麦叶片水势和光合作用,抑制植株的生长,而水分胁迫下外源Glc处理能明显增加叶片水势和光合色素含量,并使水分胁迫和水分胁迫后复水处理条件下,小麦幼苗叶片的净光合速率(Pn)、气孔导度(Gs)胞间CO2浓度(Ci)和叶片水分利用效率(WUE)显著升高,而使蒸腾速率(Tr)下降。同时,外源Glc处理显著提高了水分胁迫下叶片中可溶性糖和脯氨酸的积累,促进不定根和侧根的生长,植株干重比单一干旱处理提高14.32%~40.39%。由此表明,水分胁迫下外源Glc通过促进小麦根系生长和提高叶组织的渗透调节能力,改善叶片的水分状况,提高了叶片的光合功能,促进小麦幼苗的生长,降低了水分胁迫对小麦幼苗生长的抑制作用。

关键词: 小麦, 葡萄糖, 水分胁迫, 光合作用, 生长

Abstract:

Drought, one of the main adverse environmental factors, obviously affects plant growth and development. Previous studies have shown one of the plant mechanisms conferred stress tolerance is the rapid accumulation of soluble sugar (glucose, fructose and sucrose) during water stress. A large number of stress responsive genes have been reported to be induced by glucose, indicating the role of sugars in environmental responses. Although it has already been shown that sugars act as signaling molecules in plants to modulate growth, development, and stress responses, little is known about the mechanisms by which plants respond to them under water stress. To investigate the regulational relation between glucose and drought resistance in wheat, the effects of exogenous glucose on growth and photosynthesis in wheat (Triticum aestivum L.) seedlings under water stress were studied. Wheat seedlings were treated with Hoagland solution (T0), 15% PEG-6000 (T1), 15% PEG-6000+100 μmol L−1 Glc (T2), and 15% PEG-6000+300 μmol L−1Glc (T3), respectively. Effects of exogenous glucose on the leaf water potential and relative water content, photosynthesis, photosynthetic pigmentcontent, soluble sugar and proline content in leaves, as well as growth of seedlings and roots were analyzed. The leaf water potential and leaf photosynthesis decreased significantly, and the growth of seedlings was inhibited when the plants were subjected to water stress. However, the leaf water potential, photosynthetic pigments content increased in T2 and T3 treatments. Simultaneously, the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and water use efficiency (WUE) in leaf increased. However, the but transpiration rate (Tr) decreased when the seedlings were treated with exogenous glucose under water stress and rewatered after water stress. Moreover,the levels of proline and soluble sugar in leaves increased by glucose treatment under water stress. Exogenous glucose treatment increased the number of lateral roots, and the length of adventitious roots, and the plant dry matter increased by 14.3240.39% compared to the drought treatment alone. These results indicate that exogenous glucose may improve drought resistance by increasing roots growth and photosynthesis in leaves under water stress.

Key words: Wheat, Glucose, Water stress, Photosynthesis, Growth

[1] Glombitza S, Dubuis P H, Thulke O, Welzl G, Bovet L, Gotz M, Affenzeller M, Geist B, Hehn A, Asnaghi C, Ernst D, Seidlitz H K, Gundlach H, Mayer K F, Martinoia E, Werck R D, Mauch F, Schaffner A. Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Mol Biol, 2004, 51: 1–19
[2] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206–216
[3] Gibson S I. Plant sugar-response pathway. Part of a complex regulatory web. Plant Physiol, 2000, 124: 1532–1539
[4] Couée I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot, 2006, 57: 449–459
[5] Furuichi T, Mori IC, Takahashi K, Muto S. Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol, 2001, 42: 1149–1155
[6] Ohto M, Onai K, Furukawa Y, Aoki E, Akai T, Nakamura K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol, 2001,127: 252–261
[7] Yuan K, Joanna W D. Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot, 2006, 57: 3359–3367
[8] Shao Y-J(邵艳军), Shan L(山仑), Li G-M(李广敏). Comparison of osmotic regulation and antioxidation between sorghum and maize seedlings under soil drought stress and water recovering conditions. Chin J Eco-agric(中国生态农业学报), 2006, 14(1): 68–70(in Chinese with English abstract)
[9] Praxedes S C, DaMatta F M, Loureiro M E. Effects of long-term soil drought on photosynthesis and carbonhydrate in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot, 2006, 56: 263–273
[10] Liu T, van Staden J. Partitioning of carbohydrates in salt-sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief. Plant Growth Regul, 2001, 33: 13–17
[11] Watanabe S, Kojima K, Ide Y, Sasaki S. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue Organ Culture, 2000, 63: 199–206
[12] Suriyan C, Roytakul S, Sathung T, Maijandang A, Tengsiriwattana S, Kirdmanee C. Exogenous glucose and abscisic acid pre-treatment in indica rice (Oryza sativa L. ssp. indica) responses to sodium chloride salt stress. J Plant Sci, 2007, 2: 141–152
[13] Price J, Laxmi A, Martin S K, Jang J C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 2004, 16: 2128–2150
[14] Xu C Y, Jing R L, Mao X G, et al. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot, 2007, 99: 439–450
[15] Li D-X(李得孝), Hou W-W(侯万伟), Yuan H-Y(员海燕). Fast-soaking methods of chlorophyll from maize leaf. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报·自然科学版), 2006, 34(11): 65–67 (in Chinese with English abstract)
[16] Zhao S-J(赵世杰), Xu C-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). The improvement of MDA measurement in plant. Plant Physiol Commun (植物生理学通讯), 1994, 30(3): 207–210(in Chinese)
[17] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205?207
[18] Levitt J. Responses of plants to environmental stress. In: Water Relation, Salt and Other Stresses, Vol. 2. 2nd edn. New York: Academic Press, 1980. p 606
[19] Qu Y-Y(曲延英), Mu P(穆平), Li X-Q(李雪琴), Tian Y-X(田玉秀), Wen F(文峰), Zhang H-L(张洪亮), Li Z-C(李自超). QTL mapping and correlations between leaf water potential and drought resistance in rice under upland and lowland environments. Acta Agron Sin (作物学报), 2008, 34(2): 198?206(in Chinese with English abstract)
[20] Gao S-B(高世斌), Feng Z-L(冯质雷), Li W-C(李晚忱), Rong T-Z(荣廷昭). Mapping QTLs for root and yield under drought stress in maize. Acta Agron Sin (作物学报), 2005, 31(6): 718?722(in Chinese with English abstract)
[21] Shao H B, Liang Z S, Shao M A. Changes of some physiological and biochemical indices for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surface B: Biointerface, 2005, 42: 103–107
[22] Lu P, Outlaw W H, Smith B G, Freed G. A new mechanism for the regulation of stomatal aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba. Plant Physiol, 1997, 114: 109–118
[23] Zhou L-N(周莉娜), Qu D(曲东), Shao L-L(邵丽丽), Yi W-J(易维洁). Effects of sulfur fertilization on the contents of photosynthetic pigments and MDA under drought stress. Acta Bot Boreali-Occident Sin(西北植物学报), 2005, 25(8): 1579–1583(in Chinese with English abstract)
[24] Zou C-J(邹春静), Han S-J(韩士杰), Xu W-D(徐文铎), Li D-T(李道棠). Eco-physiological responses of Picea mongolica ecotypes to drought stress. Chin J Appl Ecol (应用生态学报), 2003, 14(9): 1446–1450(in Chinese with English abstract)
[25] Guo S-K(郭书奎), Zhao K-F(赵可夫). The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings. Acta Phytophysiol Sin (植物生理学报), 2001, 27(6): 461–466 (in Chinese with English abstract)
[26] Hou C-X(侯彩霞), Tang Z-C(汤章城). Function and mechanism of cornpatible solutes. Plant Physiol Commun (植物生理学通讯), 1999, 35(1): 1–7 (in Chinese)
[27] Cheng W H, Endo A, Zhou L, Penney J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/ reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 2002, 14: 2723–2743
[28] Hellmann H, Funck D, Rentsch D, Frommer W B. Hypersensitivit of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol, 2000, 123: 779–789
[29] Boriboonkaset T, Bunyakijjinda V, Chaum S, Kirdmanee C. Effect of exogenous sugar classes and concentrations on salt-tolerant ability of indica rice (Oryza sativa L.). Acta Hort (ISHS), 2007, 764: 155–164
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[7] 秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性[J]. 作物学报, 2022, 48(4): 988-1004.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!