欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 733-740.doi: 10.3724/SP.J.1006.2009.00733

• 耕作栽培·生理生化 • 上一篇    下一篇

不同基因型水稻苗期对1,2,4-三氯苯胁迫的生理响应

张国良12,陈文军2,仇利民1,孙国荣2,戴其根2,张洪程2   

  1. 1淮阴工学院 生命科学与化学工程学院,江苏淮安223001;2扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009
  • 收稿日期:2008-06-18 修回日期:2008-09-05 出版日期:2009-04-12 网络出版日期:2009-02-16
  • 通讯作者: 张国良
  • 基金资助:

    本研究由国家科技支撑计划重大项目(2006BAD02A03),江苏省高校自然科学基础研究项目(04KJD210030和07KJD180018),江苏省高校“青蓝工程”优秀青年骨干老师项目(2006),江苏省自然科学基金项目(BK2008193),淮安市产学研合作促进计划项目(HAC0823)资助。

Physiological Response to 1,2,4-Trichlorobenzene Stress of Different Rice Genotypes in seedlings

ZHANG Guo-Liang12,CHEN Wen-Jun2,QIU Li-Min1,SUN Guo-Rong2,DAI Qi-Gen2,ZHANG Hong-Cheng2   

  1. 1College of Life Science and Chemistry Engineering,Huaiyin Institute of Technology,Huai'an 223001,China;2Key Laboratory for Genetics andPhysiology of Jiangsu Province,Yangzhou University,Yangzhou 225009,China
  • Received:2008-06-18 Revised:2008-09-05 Published:2009-04-12 Published online:2009-02-16
  • Contact: ZHANG Guo-Liang

摘要:

利用沙培试验,研究了6种浓度(00.10.20.40.60.8 mmol kg-1)1,2,4-三氯苯(TCB)对两水稻品种香粳20-18(耐性基因型)和泗阳1382(敏感基因型)种子发芽率、发芽指数、幼苗生物量以及叶片和根系的蛋白质含量、丙二醛含量(MDA)、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、过氧化氢酶(CAT)活性等生理指标的影响。结果表明,TCB胁迫下水稻种子发芽率和发芽指数变化不明显,幼苗的生物量显著下降,香粳20-18下降幅度比泗阳1382小;随TCB胁迫程度的增强,香粳20-18叶片和根系可溶性蛋白质含量呈增加的趋势,泗阳1382叶片蛋白质含量显著下降,高浓度TCB胁迫下其根系蛋白质含量显著下降;两个基因型叶片的O2?产生速率先降后升,香粳20-18根系的O2?产生速率先降后升,高浓度TCB胁迫下显著高于对照,而泗阳1382与对照差异不显著香粳20-18叶片SOD活性随TCB胁迫程度的增强呈上升趋势,低浓度TCB胁迫下就开始显著高于对照,根系SOD活性显著增强,而泗阳1382叶片和根系SOD活性与对照差异不显著;香粳20-18叶片POD活性先升后降,根系POD活性显著高于对照,而泗阳1382叶片和根系POD活性均显著下降;香粳20-18叶片CAT活性高于或显著高于对照泗阳1382低于或显著低于对照;两个基因型叶片的MDA含量先降后升,高浓度TCB胁迫下MDA含量显著高于对照,根系MDA含量均随TCB胁迫程度的增强而显著增加。总之,生物量降低幅度小、叶片和根系的蛋白质含量高、抗氧化酶系统清除活性氧的能力强、MDA含量低是耐性基因型的主要生理特征

关键词: 1,2,4三氯苯, 水稻, 耐性基因型, 敏感基因型, 毒性, 抗氧化酶

Abstract:

1,2,4-Trichlorobenzene (TCB) has pervaded in industrial and agricultural production. Because of a series of problems due to its longevity and amassment, TCB has been added into the environmental pollutant list. In order to know how TCB affects the rice seed germination, seedling growth and its physiological characteristics, the seed germination, seedling biomass, soluble protein, and malnodialdehyde (MDA) contents, as well as activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves and roots of seedlings treated with TCB were investigated in a sand culture experiment using rice cultivars, Xiangjing 20-18 (TCB tolerant genotype)and Siyang 1382(TCB sensitive genotype). The results indicated that TCB had little effect on the seed germination rate and index, however caused the significant reduction of seedling biomass, withXiangjing 20-18 being more affected than Siyang 1382. With TCB stress degree strengthening, soluble protein content of Xiangjing 20-18 leaves and roots presented anincreasing tendency, while that of Siyang 1382 leaves decreased significantly, and that of its roots decreased too under treatment of high TCB concentration. O2? producing velocity of leaves in two genotypes decreased firstly, then increased with increasing TCB concentration. That of Xiangjing 20-18 roots presented thesame tendency, and significantly higher than the control at TCB ≥0.6 mmol kg-1, while that of Siyang 1382 roots had no significant difference with that of the control. SOD activity of Xiangjing 20-18 leaves increased, and that of roots increased significantly. After TCB ≥0.2 mmol kg-1, SOD activity of Xiangjing 20-18 leaves was significantly higher than that of the control, that of Siyang 1382 leaves and roots was not significantly different with that of the control. POD activity of Xiangjing 20-18 leaves increased firstly, then decreased, and that of roots was significantly higher than the control, while that of Siyang 1382 leaves and roots decreased significantly. CAT activity of Xiangjing 20-18 leaves was higher or significantly higher than that of the control, and that of Siyang 1382 was contrary to the result of Xiangjing 20-18. MDA content of leaves decreased firstly, then increased, being significantly higher than that of the control at high TCB concentration, and that of roots increased significantly in two genotype. In conclusion, lower reduction of seedling biomass, high protein content of leaves and roots, the better active oxygen’s elimination ability and lower MDA content in plants would be considered as the physiological traits in TCB-tolerant genotypes of rice.

Key words: 1,2,4-trichlorbenzene, Rice, Tolerant genotype, Sensitive genotype, Toxicity, Antioxidant enzymes

[1] Jaime D, Manuel R, Mario D. 1,2,4-trichlorobenzene flow characteristics in saturated homogeneous and stratified porous media. Water, Air, Soil Pollut, 2006, 177: 3–17
[2] Zhou W-M(周文敏), Fu D-Q(傅德黔), Sun Z-G(孙宗光). Blacklist of pre-control contaminations in water. Environ Monitoring in China (中国环境监测), 1990, 6(4) : 1–3 (in Chinese)
[3] Zhou X(周霞), Yu G(余刚), Zhang Z-L(张祖麟), Niu J-F(牛军峰). Chlorobenzenes in water and surface sediments from Tonghui river of Beijing. Environ Sci(环境科学), 2005, 26(2): 117–120 (in Chinese with English abstract)
[4] Zhou X(周霞), Yu G(余刚), Huang J(黄俊), Zhang Z-L(张祖麟), Hu H-Y(胡洪营). Residues and distribution characters of chlorobenzenes in soil and plants from Beijing Southeast Chemical Industry Zone. Environ Sci (环境科学), 2007, 28(2): 249–254 (in Chinese with English abstract)
[5] Cai Q-Y(蔡全英), Mo C-H(莫测辉), Wu Q-T(吴启堂), Li G-R(李桂荣). Preliminary study on the content of chlorobenzenes in selected municipal sludge of China. Environ Chem (环境化学), 2002, 21(2): 139–143 (in Chinese with English abstract)
[6] Brunsbach F R, Reineke W. Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol, 1994, 42: 415–420
[7] He Y W, Tieheng S, Ziqing O, Ayfer Y, Antonius K. Fate of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil-rice paddy system. Chemosphere, 1996, 32: 1381–1389
[8] Wang Z-G(王泽港), Wang D-Z(万定珍), Yang Y-C(杨亚春), Ge C-L(葛才林), Ma F(马飞), Yang J-C(杨建昌). Effects of 1,2,4-trichloroben and naphthalene on grain yield and quality of rice. Chin J Rice Sci (中国水稻科学), 2006, 20(3): 295–300 (in Chinese with English abstract)
[9] Zhang J Y, Zhao W, Pan J, Qiu L M, Zhu Y M. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area. Environ Int, 2005, 31: 855–860
[10] Jan J. Chlorobenzene residues in human fat and milk. Bull Environ Contamination Toxicol, 1983, 30: 595–599
[11] Eck J M C van, Koelmans A A, Deneer J W. Uptake and elimination of 1,2,4-trichlorobenzene in the guppy (Poecilia reticulata) at sublethal and lethal aqueous concentrations. Chemosphere, 1997, 34: 2259–2270
[12] Bogaards J J P, Vanommen B, Wolf C R, Vanbladeren P J. Human cytochrome P450 enzyme selectivities in the oxidation of chlorinated Benzenes. Toxicol Appl Pharmacol, 1995, 132: 44–52
[13] Kong F X. Molecular structure and biochemical toxicity of four halogeno-benzenes on the unicellular green alga. Environ Exp Bot, 1998, 40: 105–111
[14] Du Q-P(杜青平), Huang C-N(黄彩娜), Jia X-S(贾晓珊), Yuan B-H(袁保红). The toxic effects of 1,2,4-trichlorobenzene on three kinds of ocean tiny algae. Ecol Environ (生态环境), 2007, 16(2): 352–357 (in Chinese with English abstract)
[15] Liu W(刘宛), Song Y-F(宋玉芳), Zhou Q-X(周启星), Li P-J(李培军), Sun T-H(孙铁珩), Yao D-M(姚德明). Effect of chlorobenzene-stress on seed germination and seedling growth of wheat. Agro-Environ Protect (农业环境保护), 2001, 20(2): 65–68 (in Chinese with English abstract)
[16] Du Q-P(杜青平), Jia X-S(贾晓珊), Yuan B-H(袁保红). Toxic effects of 1,2,4-trichlorobenzene on rice seed germinationand seedling growth. Chin J Appl Ecol(应用生态学报), 2006, 17(11): 2185–2188 (in Chinese with English abstract)
[17] Zhang G-L(张国良), Chen W-J(陈文军), Wang X(王显), Jin T(金添), Dai Q-G(戴其根), Sun G-R(孙国荣), Xu C(许轲), Huo Z-Y(霍中洋), Zhang H-C(张洪程). Physiological reaction of wheat seedling to 1,2,4-trichlorobenzene stress. Acta Ecol Sin (生态学报), 2008, 28(9): 4388–4395 (in Chinese with English abstract)
[18] Jiang X(蒋新), Xu S-F(许士奋), Martens D, Wang L-S(王连生). Polychlorinated organic contaminants in waters, suspended solids and sediments of the Nanjing section, Yangtze River. Chin Environ Sci (中国环境科学), 2000, 20(3): 30–34 (in Chinese with English abstract)
[19] Jing L-J(景丽洁), Wang X-D(王晓栋), Huang H(黄宏), Yu Y-J(郁亚娟), Wang L-S(王连生). Characteristics and effect factors for sorption of trichlorobenzene on Sediment in Huaihe River (Jiangsu Reach). Environ Sci (环境科学), 2005, 26(2): 83–87 (in Chinese with English abstract)
[20] Chen W-J(陈文军), Zhang G-L(张国良), Sun G-R(孙国荣), Dai Qi-G(戴其根), Zhang H-C(张洪程), Tao J-F(陶金飞), Sun J(孙洁), Yan L-F(严林锋). Screening of tolerant rice genotypes to 1,2,4-trichlorobenzene stress at seedling stage. J Agro-environ Sci (农业环境科学学报), 2008, 27(3): 30–34 (in Chinese with English abstract)
[21] OECD(Organization for Economic Cooperation and Development). Proposal for Updating Guideline 208: Terrestrial (Non-Target) Plant Test 208A-Seedling Emergence and Seedling Growth test. Paris, France, 2000
[22] International Organization for Standardization (ISO). Soil Quality-Determination of the Effects of Pollutants on Soil Flora. Part 1: Method for the Measurement of Inhibition of Root Growth. ISO, 1993. pp 11269–11273
[23] Zhang Z-L(张志良). The Guidance of Plant Physiological Experiment (植物生理学实验指导). Beijing: Higher Education Press, 2003. pp 274–277 (in Chinese)
[24] Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant. Plant Physiol Commun (植物生理学通讯), 1990, 26(6): 55–57 (in Chinese with English abstract)
[25] Zhang X-Z(张宪政). Research Method of Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 195–218 (in Chinese)
[26] Li H-S(李合生), Sun Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). Experimental Principle and Technique for Plant Physiology and Biochemistry(植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 167–169 (in Chinese)
[27] Zou Q(邹琦). The Guidance of Plant Physiological Experiment (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 173–174 (in Chinese)
[28] Liu W(刘宛), Sun T-H(孙铁珩), Zhou Q-X(周启星), Li P-J(李培军), Xu H-X(许华夏), Yang G-F(杨桂芬), Zhang H-R(张海荣), Qi P(齐鹏). Chlorobenze-stressing injury of the germination of soybean seed. Chin J Appl Ecol (应用生态学报), 2002, 13(2): 141–144 (in Chinese with English abstract)
[29] Ge C-L(葛才林), Wan D-Z(万定珍), Wang Z-G(王泽港), Ding Y(丁艳), Wang Y-L(王余龙), Shang Y(商奇), Ma F(马飞), Luo S-S(罗时石). Response of rice roots to 1,2,4-trichlorobenzene stres. Acta Agron Sin (作物学报), 2007, 33(12): 1991–1200
[30] Ambasht N K, Agrawal M. Interactive effects of ozone and ultraviolet-B singly and in combination on physiological and biochemical characteristics of soybean plants. Plant Biol, 2003, 30: 37–45
[31] Xu Y-M(徐应明), Yuan Z-H(袁志华), Li J-X(李军幸), Dai X-H(戴晓华). Effects of nitrobenzene and chlorobenzene on seed germination and biological characters of wheat. J Irrig Drain (灌溉排水学报), 2004, 23(5): 6–9 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!