作物学报 ›› 2009, Vol. 35 ›› Issue (4): 733-740.doi: 10.3724/SP.J.1006.2009.00733
张国良12,陈文军2,仇利民1,孙国荣2,戴其根2,张洪程2
ZHANG Guo-Liang12,CHEN Wen-Jun2,QIU Li-Min1,SUN Guo-Rong2,DAI Qi-Gen2,ZHANG Hong-Cheng2
摘要:
利用沙培试验,研究了6种浓度(0、0.1、0.2、0.4、0.6、0.8 mmol kg-1沙)的1,2,4-三氯苯(TCB)对两水稻品种香粳20-18(耐性基因型)和泗阳1382(敏感基因型)种子发芽率、发芽指数、幼苗生物量以及叶片和根系的蛋白质含量、丙二醛含量(MDA)、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、过氧化氢酶(CAT)活性等生理指标的影响。结果表明,TCB胁迫下,水稻种子发芽率和发芽指数变化不明显,幼苗的生物量显著下降,香粳20-18下降幅度比泗阳1382小;随TCB胁迫程度的增强,香粳20-18叶片和根系可溶性蛋白质含量呈增加的趋势,泗阳1382叶片蛋白质含量显著下降,高浓度TCB胁迫下其根系蛋白质含量显著下降;两个基因型叶片的O2?产生速率先降后升,香粳20-18根系的O2?产生速率先降后升,高浓度TCB胁迫下显著高于对照,而泗阳1382与对照差异不显著;香粳20-18叶片SOD活性随TCB胁迫程度的增强呈上升趋势,低浓度TCB胁迫下就开始显著高于对照,根系SOD活性显著增强,而泗阳1382叶片和根系SOD活性与对照差异不显著;香粳20-18叶片POD活性先升后降,根系POD活性显著高于对照,而泗阳1382叶片和根系POD活性均显著下降;香粳20-18叶片CAT活性高于或显著高于对照,泗阳1382低于或显著低于对照;两个基因型叶片的MDA含量先降后升,高浓度TCB胁迫下MDA含量显著高于对照,根系MDA含量均随TCB胁迫程度的增强而显著增加。总之,生物量降低幅度小、叶片和根系的蛋白质含量高、抗氧化酶系统清除活性氧的能力强、MDA含量低是耐性基因型的主要生理特征。
[1] Jaime D, Manuel R, Mario D. 1,2,4-trichlorobenzene flow characteristics in saturated homogeneous and stratified porous media. Water, Air, Soil Pollut, 2006, 177: 3–17 [2] Zhou W-M(周文敏), Fu D-Q(傅德黔), Sun Z-G(孙宗光). Blacklist of pre-control contaminations in water. Environ Monitoring in China (中国环境监测), 1990, 6(4) : 1–3 (in Chinese) [3] Zhou X(周霞), Yu G(余刚), Zhang Z-L(张祖麟), Niu J-F(牛军峰). Chlorobenzenes in water and surface sediments from Tonghui river of Beijing. Environ Sci(环境科学), 2005, 26(2): 117–120 (in Chinese with English abstract) [4] Zhou X(周霞), Yu G(余刚), Huang J(黄俊), Zhang Z-L(张祖麟), Hu H-Y(胡洪营). Residues and distribution characters of chlorobenzenes in soil and plants from Beijing Southeast Chemical Industry Zone. Environ Sci (环境科学), 2007, 28(2): 249–254 (in Chinese with English abstract) [5] Cai Q-Y(蔡全英), Mo C-H(莫测辉), Wu Q-T(吴启堂), Li G-R(李桂荣). Preliminary study on the content of chlorobenzenes in selected municipal sludge of China. Environ Chem (环境化学), 2002, 21(2): 139–143 (in Chinese with English abstract) [6] Brunsbach F R, Reineke W. Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol, 1994, 42: 415–420 [7] He Y W, Tieheng S, Ziqing O, Ayfer Y, Antonius K. Fate of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil-rice paddy system. Chemosphere, 1996, 32: 1381–1389 [8] Wang Z-G(王泽港), Wang D-Z(万定珍), Yang Y-C(杨亚春), Ge C-L(葛才林), Ma F(马飞), Yang J-C(杨建昌). Effects of 1,2,4-trichloroben and naphthalene on grain yield and quality of rice. Chin J Rice Sci (中国水稻科学), 2006, 20(3): 295–300 (in Chinese with English abstract) [9] Zhang J Y, Zhao W, Pan J, Qiu L M, Zhu Y M. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area. Environ Int, 2005, 31: 855–860 [10] Jan J. Chlorobenzene residues in human fat and milk. Bull Environ Contamination Toxicol, 1983, 30: 595–599 [11] Eck J M C van, Koelmans A A, Deneer J W. Uptake and elimination of 1,2,4-trichlorobenzene in the guppy (Poecilia reticulata) at sublethal and lethal aqueous concentrations. Chemosphere, 1997, 34: 2259–2270 [12] Bogaards J J P, Vanommen B, Wolf C R, Vanbladeren P J. Human cytochrome P450 enzyme selectivities in the oxidation of chlorinated Benzenes. Toxicol Appl Pharmacol, 1995, 132: 44–52 [13] Kong F X. Molecular structure and biochemical toxicity of four halogeno-benzenes on the unicellular green alga. Environ Exp Bot, 1998, 40: 105–111 [14] Du Q-P(杜青平), Huang C-N(黄彩娜), Jia X-S(贾晓珊), Yuan B-H(袁保红). The toxic effects of 1,2,4-trichlorobenzene on three kinds of ocean tiny algae. Ecol Environ (生态环境), 2007, 16(2): 352–357 (in Chinese with English abstract) [15] Liu W(刘宛), Song Y-F(宋玉芳), Zhou Q-X(周启星), Li P-J(李培军), Sun T-H(孙铁珩), Yao D-M(姚德明). Effect of chlorobenzene-stress on seed germination and seedling growth of wheat. Agro-Environ Protect (农业环境保护), 2001, 20(2): 65–68 (in Chinese with English abstract) [16] Du Q-P(杜青平), Jia X-S(贾晓珊), Yuan B-H(袁保红). Toxic effects of 1,2,4-trichlorobenzene on rice seed germinationand seedling growth. Chin J Appl Ecol(应用生态学报), 2006, 17(11): 2185–2188 (in Chinese with English abstract) [17] Zhang G-L(张国良), Chen W-J(陈文军), Wang X(王显), Jin T(金添), Dai Q-G(戴其根), Sun G-R(孙国荣), Xu C(许轲), Huo Z-Y(霍中洋), Zhang H-C(张洪程). Physiological reaction of wheat seedling to 1,2,4-trichlorobenzene stress. Acta Ecol Sin (生态学报), 2008, 28(9): 4388–4395 (in Chinese with English abstract) [18] Jiang X(蒋新), Xu S-F(许士奋), Martens D, Wang L-S(王连生). Polychlorinated organic contaminants in waters, suspended solids and sediments of the Nanjing section, Yangtze River. Chin Environ Sci (中国环境科学), 2000, 20(3): 30–34 (in Chinese with English abstract) [19] Jing L-J(景丽洁), Wang X-D(王晓栋), Huang H(黄宏), Yu Y-J(郁亚娟), Wang L-S(王连生). Characteristics and effect factors for sorption of trichlorobenzene on Sediment in Huaihe River (Jiangsu Reach). Environ Sci (环境科学), 2005, 26(2): 83–87 (in Chinese with English abstract) [20] Chen W-J(陈文军), Zhang G-L(张国良), Sun G-R(孙国荣), Dai Qi-G(戴其根), Zhang H-C(张洪程), Tao J-F(陶金飞), Sun J(孙洁), Yan L-F(严林锋). Screening of tolerant rice genotypes to 1,2,4-trichlorobenzene stress at seedling stage. J Agro-environ Sci (农业环境科学学报), 2008, 27(3): 30–34 (in Chinese with English abstract) [21] OECD(Organization for Economic Cooperation and Development). Proposal for Updating Guideline 208: Terrestrial (Non-Target) Plant Test 208A-Seedling Emergence and Seedling Growth test. Paris, France, 2000 [22] International Organization for Standardization (ISO). Soil Quality-Determination of the Effects of Pollutants on Soil Flora. Part 1: Method for the Measurement of Inhibition of Root Growth. ISO, 1993. pp 11269–11273 [23] Zhang Z-L(张志良). The Guidance of Plant Physiological Experiment (植物生理学实验指导). Beijing: Higher Education Press, 2003. pp 274–277 (in Chinese) [24] Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant. Plant Physiol Commun (植物生理学通讯), 1990, 26(6): 55–57 (in Chinese with English abstract) [25] Zhang X-Z(张宪政). Research Method of Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 195–218 (in Chinese) [26] Li H-S(李合生), Sun Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). Experimental Principle and Technique for Plant Physiology and Biochemistry(植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 167–169 (in Chinese) [27] Zou Q(邹琦). The Guidance of Plant Physiological Experiment (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 173–174 (in Chinese) [28] Liu W(刘宛), Sun T-H(孙铁珩), Zhou Q-X(周启星), Li P-J(李培军), Xu H-X(许华夏), Yang G-F(杨桂芬), Zhang H-R(张海荣), Qi P(齐鹏). Chlorobenze-stressing injury of the germination of soybean seed. Chin J Appl Ecol (应用生态学报), 2002, 13(2): 141–144 (in Chinese with English abstract) [29] Ge C-L(葛才林), Wan D-Z(万定珍), Wang Z-G(王泽港), Ding Y(丁艳), Wang Y-L(王余龙), Shang Y(商奇), Ma F(马飞), Luo S-S(罗时石). Response of rice roots to 1,2,4-trichlorobenzene stres. Acta Agron Sin (作物学报), 2007, 33(12): 1991–1200 [30] Ambasht N K, Agrawal M. Interactive effects of ozone and ultraviolet-B singly and in combination on physiological and biochemical characteristics of soybean plants. Plant Biol, 2003, 30: 37–45 [31] Xu Y-M(徐应明), Yuan Z-H(袁志华), Li J-X(李军幸), Dai X-H(戴晓华). Effects of nitrobenzene and chlorobenzene on seed germination and biological characters of wheat. J Irrig Drain (灌溉排水学报), 2004, 23(5): 6–9 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|