欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1749-1754.doi: 10.3724/SP.J.1006.2009.01749

• 研究简报 • 上一篇    下一篇

小麦应答低磷的钙依赖蛋白激酶基因TaCPK1A和TaCPK10的克隆和表达

路文静2,李瑞娟2,李小娟2,郭程瑾1,谷俊涛2,肖凯1,*   

  1. 1河北农业大学农学院,河北保定071001;2河北农业大学生命科学学院;河北保定071001
  • 收稿日期:2009-02-27 修回日期:2009-04-30 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 肖凯, E-mail: xiaokai@hebau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)前期项目(2007CB116209),河北省重点基础研究项目(08965525D),河北省自然科学基金(C2007000476)资助。

Cloning and Expression of Calcium-Dependent Protein Kinase Genesis TaCPK1A and TaCPK10 in Response to Deficient-Pi in Wheat

LU Wen-Jing2,LI Rui-Juan2,LI Xiao-Juan2,GUO Cheng-Jin1,GU Jun-Tao2,XIAO Kai1*   

  1. 1 College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2 College of Life Science, Agricultural University of Hebei, Baoding 071001, China
  • Received:2009-02-27 Revised:2009-04-30 Published:2009-09-12 Published online:2009-07-04
  • Contact: XIAO Kai, E-mail: xiaokai@hebau.edu.cn

摘要:

采用构建富集磷胁迫特异表达基因cDNA差减文库、序列分析和cDNA-AFLP技术,鉴定了2个应答低磷胁迫的钙依赖蛋白激酶(CDPK)基因的表达序列标签。克隆、测序和比对结果表明,上述基因分别为TaCPK1ATaCPK10。其cDNA长度分别为2 129 bp1 696 bp,开放阅读框分别为1 599 bp1 281 bp,分别编码532426个氨基酸;具有CDPK的典型结构特征。系统进化分析表明,上述基因的核苷酸序列同源性低,分别来自不同的祖先。在对低磷胁迫的响应上,TaCPK1A在磷胁迫1~24 h范围内根系内的表达水平不断增强,叶内表达水平在1 h内明显被诱导,以后保持稳定;TaCPK10在相应磷胁迫时间范围根叶内的表达水平均呈低—高—低变化,在磷胁迫1 h的表达被诱导,以后又逐渐降至胁迫前水平。TaCPK1ATaCPK10对氮、钾胁迫没有应答响应。结果表明,CDPK在介导小麦低磷胁迫的信号转导中具有重要作用,小麦中存在两种或多种CDPK介导的磷酸化过程参与低磷信号的转导。

关键词: 小麦(Triticum aestivum L.), 钙依赖蛋白激酶, 克隆, 低磷胁迫, 基因表达

Abstract:

Two expressed sequence tags (ESTs) of calcium-dependent protein kinase (CDPK) genes responding to deficient-Pi were identified from wheat (Triticum aestivum L.) cultivar Shixin 828 by subtractive suppression cDNA library and cDNA-AFLP approaches. The genes, TaCPK1A and TaCPK10, contained the conserved domains of plant CDPK, were 2 129 bp and 1 696 bp in full length open reading frames of 1599 bp and 1 281 bp, encoding 532 and 426 amino acids,respectively. Phylogenetic analysis implied different ancestors of TaCPK1A and TaCPK10 because of their low identity of sequence. Under low-Pi condition, the expression level of TaCPK1A in roots was strongly inducible and reached the highest at 24 h after treatment, but that in leaves was induced in 1 h of treatment and maintained stably afterwards. The expression of TaCPK10 in roots and leaves both showed a pattern of low–high–low with the peak at 1 h of treatment,and then decreased to the level before treatment. No responses of TaCPK1A and TaCPK10 were observed to low-N and low-K stresses. Therefore, it is suggested that CDPK playsan important role in mediating phosphate-starvation signal in wheat. There are at least two phosphorylation reaction pathways for transduction of low-Pi signal, in which CDPKs are involved.

Key words: Wheat(Triticum aestivum L.), Calcium-dependent protein kinase, Cloning, Low-Pi stress, Gene expression

[1] Harmon A C, Gribskov M, Gubrium E. The CDPK superfamily of protein kinases. New Phytol, 2001, 151: 175-183

[2] Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019-3036

[3] Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 66: 429-443

[4] Martínez-Noël G, Nagaraj V J, Calóa G, Wiemken A, Pontis H G. Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiol Biochem, 2007, 45: 410-419

[5] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 1996, 274: 1900-1902

[6] Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol, 2005, 46: 356-366

[7] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416-1428

[8] Zhang T, Wang Q, Chen X, Tian C, Wang X, Xing T, Li Y, Wang Y. Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. J Plant Physiol, 2005, 162: 1149-1159

[9] Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94: 323-332

[10] Guo L(郭丽), Long S-X(龙素霞), Zhao F-H(赵芳华), Bao J-X(鲍金香), Guo C-J(郭程瑾), Xiao K(肖凯). Comparison and evaluation of biochemical criteria for phosphorus efficiency in wheat. J Plant Genet Resour (植物遗传资源学报), 2008, 9(4): 506-510 (in Chinese with English abstract)

[11] Chandran V, Stollar E J, Lindorff-Larsen K, Harper J F, Chazin W J, Dobson C M, Luisi B F, Christodoulou J. Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol, 2006, 357: 400-410

[12] Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases: The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129: 469-485

[13] Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinase. Annu Rev Plant Biol, 2004, 55: 263-288.

[14] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19: 1065-1080

[15] Yu X C, Zhu S Y, Gao G F, Wang X J, Zhao R, Zou K Q, Wang X F, Zhang X Y, Wu F Q, Peng C C, Zhang D P. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol, 2007, 64: 531-538

[16] Romeis T, Ludwig A A, Martin R, Jones J D. Calcium-dependent protein kinase play an essential role in a plant defence response. EMBO J, 2001, 20: 5556-5567

[17] Alice C H. Michael G. Jeffrey F H. CDPKs - a kinase for ever Ca2+ signal? Trends Plant Sci, 2000, 1: 154-159

[18] Weljie A M, Clarke T E, Juffer A H, Harmon A C, Vogel H J. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Proteins, 2000, 39: 343-357

[19] Böhmer M, Romeis T. A chemical-genetic approach to elucidate protein kinase function in planta. Plant Mol Biol, 2007, 65: 817-827

[20] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23: 319-327

[21] Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M.Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics, 2007, 277: 713-723

[22] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995

[23] Bucher M, Rausch C, Daram P. Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci, 2001, 164: 209-217

[24] Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49

[25] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptation by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447

[26] Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[6] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[7] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[10] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[11] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[12] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[13] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[14] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[15] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!