作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2029-2036.doi: 10.3724/SP.J.1006.2009.02029
苗鸿鹰1,赵金峰1,李小娟2,孙昭华2,路文静2,谷俊涛2,郭程瑾1,肖凯1,*
MIAO Hong-Ying1,ZHAO Jin-Feng1,LI Xiao-Juan2,SUN Zhao-Hua2,LU Wen-Jing2,GU Jun-Tao2,GUO Cheng-Jin1,XIAO Kai1
摘要:
在富集低磷胁迫特异表达基因的小麦根系cDNA差减杂交文库中,鉴定了1个与拟南芥WRKY75同源的小麦WRKY型转录因子基因表达序列标签(EST)。依据该EST序列高度同源的小麦WRKY72b序列,克隆了对应基因TaWRKY72b-1。TaWRKY72b-1与WRKY72b在cDNA序列上有2个碱基的差异,但编码氨基酸没有改变。TaWRKY72b-1开放阅读框为621 bp,编码206个氨基酸残基,氨基酸组成上含有保守的WRKY基序和C2H2基序。系统进化分析表明,TaWRKY72b-1与小麦WRKY72a和大麦WRKY12可能来自相同的祖先。与对照供磷水平(2 mmol L-1 P)相比,低磷处理使根叶中TaWRKY72b-1的转录本数量均明显增多。表明TaWRKY72b-1对低磷胁迫逆境产生了明显的应答作用。TaWRKY72b-1在烟草中表达表明,低磷胁迫条件下,高表达TaWRKY72b-1的烟草植株干重、单株磷累积量和磷利用效率均较对照明显增加。因此,TaWRKY72b-1基因在改善低磷胁迫下作物的磷效率中可能具有较重要的应用价值。
[1] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995[2] Bucher M, Rausch C, Daram P. Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci, 2001, 164: 209-217[3] Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49[4] Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939[5] Sano T, Nagata T. The possible involvement of a phosphate- induced transcription factor encoded by Phi-2 gene from tobacco in ABA signaling pathways. Plant Cell Physiol, 2002, 43: 12-20[6] Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 15: 2122-2133[7] Yi K K, Wu Z C, Zhou J, Du L M, Guo L B, Wu Y R, Wu P. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol, 2005, 138: 2087- 2096[8] Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143: 1789- 1801[9] Dong J X, Chen C H, Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51: 21-37[10] Zhang Z L, Xie Z, Zou X, Casaretto J, Ho T H, Shen Q J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134: 1500-1513[11] Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100[12] Chen C H, Chen Z X. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA- binding proteins from tobacco. Plant Mol Biol, 2000, 42: 387- 396[13] Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983[14] Huang T, Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol, 2002, 48: 339-350[15] Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumula- tion of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet, 2000, 263: 30-37[16] Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 2004, 279: 11736-11743[17] Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J, 2002, 31: 319-330[18] Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130: 1143-1151[19] Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T. Monitoring the expression profiles of 7 000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292[20] Guo L(郭丽), Long S-X(龙素霞), Zhao F-H(赵芳华), Bao J-X(鲍金香), Guo C-J(郭程瑾), Xiao K(肖凯). Comparison and evaluation of biochemical criteria for phosphorus efficiency in wheat. J Plant Genet Resour (植物遗传资源学报), 2008, 9(4): 506-510 (in Chinese with English abstract)[21] Zhang H-N(张海娜), Li X-J(李小娟), Li C-D(李存东), Xiao K(肖凯).作物学报), 2008, 34(8): 1403-1408 (in Chinese with English abstract)Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant cabability in tobacco. Acta Agron Sin ([22] Nanjing Agricultural University(南京农业大学). Analysis of Soil Agricultural Chemistry (土壤农化分析). Beijing: China Agriculture Press, 1994. pp 268-270 (in Chinese)[23] Ulker B, Somssich I E. WRKY transcription factors: From DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491-498[24] Yu D Q, Chen C H, Chen Z X. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001, 13: 1527-1540[25] Kim K C, Fan B, Chen Z. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol, 2006, 142: 1180-1192[26] Mangelsen E, Kilian J, Berendzen K W, Kolukisaoglu U H, Harter K, Jansson C, Wanke D. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 28: 194[27] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 10519-10523Shin H, Shin H S, Dewbre G R, Harrison M J. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004, 39: 629-642 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[5] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[6] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[7] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[8] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[9] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[10] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[11] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[12] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[13] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[14] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|